人工晶体学报 ›› 2025, Vol. 54 ›› Issue (5): 832-840.DOI: 10.16553/j.cnki.issn1000-985x.2024.0313
魏玉华1(), 陈新华1(
), 蒋帅1, 李小双1, 王建广2
收稿日期:
2024-12-12
出版日期:
2025-05-15
发布日期:
2025-05-28
通信作者:
陈新华,博士,副教授。E-mail:chenxinhua@bucea.edu.cn作者简介:
魏玉华(1998—),男,辽宁省人,硕士研究生。E-mail:2108020022007@stu.bucea.edu.cn
基金资助:
WEI Yuhua1(), CHEN Xinhua1(
), JIANG Shuai1, LI Xiaoshuang1, WANG Jianguang2
Received:
2024-12-12
Online:
2025-05-15
Published:
2025-05-28
摘要: 多稳态超材料能够在外部力作用下发生变形,从而实现对弹性波传播的灵活调控。本文基于双稳态弯曲弹性梁结构,提出了两种不同维度弯曲弹性梁多稳态超材料,该超材料具有两种稳定构型,并能够通过外部力的作用在这两种稳定状态之间切换。通过有限元方法,系统研究了多稳态超材料在两种稳定构型下的色散关系和频率响应特性。研究结果表明,通过调节外部施加的力,可以实现稳态结构的形变,从而有效地调整带隙的频率范围和宽度。此外,将一维多稳态超材料拓展为三维多稳态超材料,可以获得更宽的第一带隙。这种稳态变化机制不仅为弹性波的传播提供了多样化的调控手段,也为弹性波导开关的设计与应用提供了新的思路。
中图分类号:
魏玉华, 陈新华, 蒋帅, 李小双, 王建广. 弯曲弹性梁多稳态超材料带隙调控特性研究[J]. 人工晶体学报, 2025, 54(5): 832-840.
WEI Yuhua, CHEN Xinhua, JIANG Shuai, LI Xiaoshuang, WANG Jianguang. Bandgap Regulation Characteristics of Multi-Stable Metamaterial with Flexural Elastic Beams Structure[J]. Journal of Synthetic Crystals, 2025, 54(5): 832-840.
Parameter | a | d | L | t | b | l |
---|---|---|---|---|---|---|
Value/mm | 174.7 | 8.0 | 123.6 | 1.0 | 13.9 | 25.0 |
表1 超材料的几何参数
Table 1 Geometric parameters of metamaterial
Parameter | a | d | L | t | b | l |
---|---|---|---|---|---|---|
Value/mm | 174.7 | 8.0 | 123.6 | 1.0 | 13.9 | 25.0 |
图5 能带结构分析。(a)拉伸稳态结构的面内能带;(b)压缩稳态结构面内能带结构
Fig.5 Energy band structure analysis. (a) In-plane band structure of the tensile stable state; (b) in-plane band structure of the compressive stable state
Parameter | Energy band structure | Frequency response | ||
---|---|---|---|---|
Tensile stable state | Compressive stable state | Tensile stable state | Compressive stable state | |
First bandgap range/Hz | 51.42~72.53 | 56.17~81.53 | 54.5~74.1 | 57.7~82.5 |
Second bandgap range/Hz | 84.82~89.59 | 93.14~101.07 | 85.6~91.3 | 88.5~98.1 |
Third bandgap range/Hz | 118.85~174.69 | 113.51~204.07 | 118.9~177.3 | 105.3~198.1 |
Fourth bandgap range/Hz | 188.09~192.56 | 204.59~229.19 | 190.1~195.7 | 200.1~224.5 |
表2 带隙范围
Table 2 Bandgap range
Parameter | Energy band structure | Frequency response | ||
---|---|---|---|---|
Tensile stable state | Compressive stable state | Tensile stable state | Compressive stable state | |
First bandgap range/Hz | 51.42~72.53 | 56.17~81.53 | 54.5~74.1 | 57.7~82.5 |
Second bandgap range/Hz | 84.82~89.59 | 93.14~101.07 | 85.6~91.3 | 88.5~98.1 |
Third bandgap range/Hz | 118.85~174.69 | 113.51~204.07 | 118.9~177.3 | 105.3~198.1 |
Fourth bandgap range/Hz | 188.09~192.56 | 204.59~229.19 | 190.1~195.7 | 200.1~224.5 |
图7 频率响应分析。(a)频率响应计算模型;(b)拉伸稳态下的频率响应曲线;(c)压缩稳态下的频率响应曲线
Fig.7 Frequency response analysis. (a) Frequency response calculation model; (b) frequency response curve in the tensile stable state; (c) frequency response curve in the compressive stable state
图8 拉伸稳态与压缩稳态第三带隙水平色散曲线对应的模态
Fig.8 Modes corresponding to the horizontal dispersion curve of the third bandgap in the tensile stable state and compressive stable state
图9 能带结构分析。(a)三维拉伸稳态的面内能带;(b)三维压缩稳态的面内能带
Fig.9 Energy band structure analysis. (a)In-plane band structure of the three-dimensional tensile stable state; (b)in-plane band structure of the three-dimensional compressive stable state
图10 三维拉伸稳态和三维压缩稳态超材料频率响应分析
Fig.10 Frequency response analysis of three-dimensional tensile stable and three-dimensional compressive stable metamaterial
图11 三维拉伸稳态与三维压缩稳态的频率响应计算
Fig.11 Frequency response calculation of three-dimensional tensile stable state and three-dimensional compressive stable state
1 |
LIU Z, ZHANG X, MAO Y, et al. Locally resonant sonic materials[J]. Science, 2000, 289(5485): 1734-1736.
PMID |
2 | HUSSEIN M I, LEAMY M J, RUZZENE M. Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook[J]. Applied Mechanics Reviews, 2014, 66(4): 040802. |
3 | GUO Z K, JIANG S, SHEN Y J, et al. Nonlinear dynamic analysis and vibration reduction of two sandwich beams connected by a joint with clearance[J]. Mechanical Systems and Signal Processing, 2025, 223: 111828. |
4 | GUO Z K, WEN J Q, YU D W, et al. Widening the band gaps of hourglass lattice truss core sandwich structures for broadband vibration suppression[J]. Journal of Vibration and Acoustics, 2023, 145(6): 061002. |
5 | 陈新华, 张 晨, 陈 猛, 等. 分形凹角蜂窝结构声子晶体振动带隙特性[J]. 人工晶体学报, 2022, 51(8): 1343-1352+1360. |
CHEN X H, ZHANG C, CHEN M, et al. Vibration bandgap characteristics of phononic crystals with fractal concave angle honeycomb structure[J]. Journal of Synthetic Crystals, 2022, 51(8): 1343-1352+1360 (in Chinese). | |
6 | GUO Z K, WEI Y H, DONG T, et al. Ultra-low-frequency vibration attenuation characteristics of multi-span metamaterial dual-beam structures[J]. Mechanics of Solids, 2024, 59(1): 431-444. |
7 | HIRSEKORN M, DELSANTO P P, LEUNG A C, et al. Elastic wave propagation in locally resonant sonic material: comparison between local interaction simulation approach and modal analysis[J]. Journal of Applied Physics, 2006, 99(12): 124912. |
8 | WANG Y F, WANG Y Z, WU B, et al. Tunable and active phononic crystals and metamaterials[J]. Applied Mechanics Reviews, 2020, 72(4): 040801. |
9 | CHEN S, FAN Y C, FU Q H, et al. A review of tunable acoustic metamaterials[J]. Applied Sciences, 2018, 8(9): 1480. |
10 | SCHAEFFER M, RUZZENE M. Wave propagation in multistable magneto-elastic lattices[J]. International Journal of Solids and Structures, 2015, 56: 78-95. |
11 | PAL R K, RIMOLI J, RUZZENE M. Effect of large deformation pre-loads on the wave properties of hexagonal lattices[J]. Smart Materials and Structures, 2016, 25(5): 054010. |
12 | BERTOLDI K, BOYCE M C. Wave propagation and instabilities in monolithic and periodically structured elastomeric materials undergoing large deformations[J]. Physical Review B, 2008, 78(18): 184107. |
13 | SHI J H, MOFATTEH H, MIRABOLGHASEMI A, et al. Programmable multistable perforated shellular[J]. Advanced Materials, 2021, 33(42): 2102423. |
14 | ZHANG H, WU J, FANG D N, et al. Hierarchical mechanical metamaterials built with scalable tristable elements for ternary logic operation and amplitude modulation[J]. Science Advances, 2021, 7(9): 1966. |
15 | PAL A, RESTREPO V, GOSWAMI D, et al. Exploiting mechanical instabilities in soft robotics: control, sensing, and actuation[J]. Advanced Materials, 2021, 33(19): 2006939. |
16 | SHAN S C, KANG S H, RANEY J R, et al. Multistable architected materials for trapping elastic strain energy[J]. Advanced Materials, 2015, 27(29): 4296-4301. |
17 | AKSOY B, SHEA H. Multistable shape programming of variable-stiffness electromagnetic devices[J]. Science Advances, 2022, 8(21): 543. |
18 | DENG B L, ZANATY M, FORTE A E, et al. Topological solitons make metamaterials crawl[J]. Physical Review Applied, 2022, 17: 014004. |
19 | CHEN T, PAULY M, REIS P M. A reprogrammable mechanical metamaterial with stable memory[J]. Nature, 2021, 589(7842): 386-390. |
20 |
RANEY J R, NADKARNI N, DARAIO C, et al. Stable propagation of mechanical signals in soft media using stored elastic energy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(35): 9722-9727.
DOI PMID |
21 |
FRENZEL T, FINDEISEN C, KADIC M, et al. Tailored buckling microlattices as reusable light-weight shock absorbers[J]. Advanced Materials, 2016, 28(28): 5865-5870.
DOI |
22 |
VASIOS N, DENG B L, GORISSEN B, et al. Universally bistable shells with nonzero Gaussian curvature for two-way transition waves[J]. Nature Communications, 2021, 12(1): 695.
DOI PMID |
23 | PAN F, LI Y L, LI Z Y, et al. 3D pixel mechanical metamaterials[J]. Advanced Materials, 2019, 31(25): 1900548. |
24 | WU S, ZE Q J, DAI J Z, et al. Stretchable origami robotic arm with omnidirectional bending and twisting[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(36): e2110023118. |
25 | WU L L, XI X Q, LI B, et al. Multi-stable mechanical structural materials[J]. Advanced Engineering Materials, 2018, 20(2): 1700599. |
26 | FABER J A, UDANI J P, RILEY K S, et al. Dome-patterned metamaterial sheets[J]. Advanced Science, 2020, 7(22): 2001955. |
27 |
SONG Y P, PANAS R M, CHIZARI S, et al. Additively manufacturable micro-mechanical logic gates[J]. Nature Communications, 2019, 10(1): 882.
DOI PMID |
28 | MAO J J, WANG S, TAN W, et al. Modular multistable metamaterials with reprogrammable mechanical properties[J]. Engineering Structures, 2022, 272: 114976. |
29 | AULD B A, GREEN R E. Acoustic fields and waves in solids: two volumes[J]. Physics Today, 1974, 27(10): 63. |
30 | LI Z Y, MA T X, WANG Y Z, et al. Vibration isolation by novel meta-design of pyramid-core lattice sandwich structures[J]. Journal of Sound and Vibration, 2020, 480: 115377. |
31 | 黄子龙. 基于声学超材料缺陷态特性的低频振动能量回收研究[D]. 兰州: 兰州交通大学, 2024. |
HUANG Z L. Study on low frequency vibration energy recovery based on defect state characteristics of acoustic metamaterials[D]. Lanzhou: Lanzhou Jiatong University, 2024 (in Chinese). |
[1] | 李小双, 蒋帅, 郭振坤. 基于超材料的周期管道系统弯曲波带隙分析及控制[J]. 人工晶体学报, 2025, 54(4): 589-597. |
[2] | 李雯婧, 田俊红, 李仁生, 李佳宁, 孙小伟. 用多孔衬里穿孔夹层结构改善双层板的低频传声损失[J]. 人工晶体学报, 2025, 54(4): 581-588. |
[3] | 朱兴杰, 章平, 左敦稳. 残余应力及电场对4H-SiC表面压痕硬度的影响[J]. 人工晶体学报, 2025, 54(4): 560-568. |
[4] | 胡继超, 赵启阳, 杨志昊, 杨莺, 彭博, 丁雄杰, 刘薇, 张红. 镓源温度对LPCVD氧化镓外延温度场影响的仿真研究[J]. 人工晶体学报, 2025, 54(3): 452-461. |
[5] | 谢银飞, 何阳, 刘伟业, 徐文慧, 游天桂, 欧欣, 郭怀新, 孙华锐. 超宽带隙氧化镓功率器件热管理的研究进展[J]. 人工晶体学报, 2025, 54(2): 290-311. |
[6] | 林海鑫, 高德东, 王珊, 张振忠, 安燕, 张文永. 大尺寸直拉硅单晶生长的多物理场建模与优化[J]. 人工晶体学报, 2025, 54(1): 17-33. |
[7] | 王云杰, 和志豪, 丁家福, 苏欣. X2(PO4)2(X=Ba、Pb)和XPO4(X=Y、Bi)中阳离子对结构框架影响及双折射率来源研究[J]. 人工晶体学报, 2025, 54(1): 85-94. |
[8] | 钟琼丽, 王绪, 马奎, 杨发顺. Al掺杂对β-Ga2O3薄膜光学性质的影响研究[J]. 人工晶体学报, 2024, 53(8): 1352-1360. |
[9] | 谭慧莹, 邢旭, 葛培琪, 毕文波. 光伏单晶硅切割片断裂强度的仿真分析与实验研究[J]. 人工晶体学报, 2024, 53(8): 1369-1377. |
[10] | 王仲, 姜娇, 宋洋, 张磊, 谷泉. 轴对称低频局域共振声子晶体带隙分析及优化[J]. 人工晶体学报, 2024, 53(7): 1177-1185. |
[11] | 和志豪, 苟杰, 王云杰, 齐亚杰, 丁家福, 张博, 赵星胜, 裴翊祯, 侯姝宇, 苏欣. Zn掺杂氮化硼的电子结构与光学性质的第一性原理研究[J]. 人工晶体学报, 2024, 53(7): 1249-1256. |
[12] | 刘婷, 李先昊, 郭耀军, 康森, 鲁雅荣, 何力军. 蓝宝石晶体纳米压入本构方程[J]. 人工晶体学报, 2024, 53(6): 982-990. |
[13] | 刘齐鲁, 郑名扬, 高洋, 张龙喜, 宋于坤, 王孚雷, 刘宏, 王东周, 桑元华. 极化电极均匀化设计调控铌酸锂周期极化占空比[J]. 人工晶体学报, 2024, 53(3): 449-457. |
[14] | 刘松, 赵仁洁, 杜一帆, 吴芳, 宋和滨, 高鹏. 声学双曲构型超材料的负折射特性研究[J]. 人工晶体学报, 2024, 53(2): 246-251. |
[15] | 楚凡, 赵春风. 基于LightGBM和遗传算法的二维层状声子晶体结构设计[J]. 人工晶体学报, 2024, 53(10): 1720-1728. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||