1 |
GREEN M A, EMERY K, HISHIKAWA Y, et al. Solar cell efficiency tables (version 49)[J]. Progress in Photovoltaics: Research and Applications, 2017, 25(1): 3-13.
|
2 |
WANG R H, ZHU J W, YOU J Y, et al. Custom-tailored solvent engineering for efficient wide-bandgap perovskite solar cells with a wide processing window and low VOC losses[J]. Energy & Environmental Science., 2024, 17(7): 2662-2669.
|
3 |
YI Z J, WANG W H, HE R, et al. Achieving a high open-circuit voltage of 1.339 V in 1.77 eV wide-bandgap perovskite solar cells via self-assembled monolayers[J]. Energy & Environmental Science, 2024, 17(1): 202-209.
|
4 |
李卓芯, 冯旭铮, 陈香港, 等. 添加剂提高宽带隙钙钛矿太阳电池的性能[J]. 太阳能学报, 2024, 45(4): 30-35.
|
|
LI Z X, FENG X Z, CHEN X G, et al. Additive improves performance of wide bandgap perovskite solar cells[J]. Acta Energiae Solaris Sinica, 2024, 45(4): 30-35 (in Chinese).
|
5 |
胡 蝶, 孙 庆, 孟祥歆, 等. 基于氨基酸衍生物盐酸盐添加剂制备高效稳定的钙钛矿太阳能电池[J]. 高等学校化学学报, 2024, 45(5): 100-109.
|
|
HU D, SUN Q, MENG X X, et al. Preparation of efficient and stable perovskite solar cells based on amino acid derivative hydrochloride additives[J]. Chemical Journal of Chinese Universities, 2024, 45(5): 100-109 (in Chinese).
|
6 |
HUANG T Y, TAN S, NURYYEVA S, et al. Performance-limiting formation dynamics in mixed-halide perovskites[J]. Science Advances, 2021, 7(46): 1799.
|
7 |
UDDIN M A, RANA P J S, NI Z Y, et al. Iodide manipulation using zinc additives for efficient perovskite solar minimodules[J]. Nature Communications, 2024, 15(1): 1355.
DOI
PMID
|
8 |
CAO Y, FENG J S, XU Z, et al. Bifunctional trifluorophenylacetic acid additive for stable and highly efficient flexible perovskite solar cell[J]. InfoMat, 2023, 5(10): 12423.
|
9 |
ZHOU W W, TAI S Y, LI Y, et al. Achieving high-quality perovskite films with guanidine-based additives for efficient and stable methylammonium-free perovskite solar cells[J]. Advanced Functional Materials, 2024, 34(46): 2407897.
|
10 |
张晓春, 王立坤, 商文丽, 等. 基于双修饰策略制备高性能反式钙钛矿太阳能电池的研究[J]. 物理学报, 2024, 73(24): 248401.
|
|
ZHANG X C, WANG L K, SHANG W L, et al. Fabrication of high-performance inverted perovskite solar cells based on dual modification strategy[J]. Acta Physica Sinica, 2024, 73(24): 248401 (in Chinese).
|
11 |
NIZAMANI N, WANG K L, JIN R J, et al. Dual-functional group passivation to foster buried interface Cohesion for high-performance perovskite photovoltaics[J]. Chemical Engineering Journal, 2024, 498: 155183.
|
12 |
HUANG Y C, YAN K R, WANG X J, et al. High-efficiency inverted perovskite solar cells via in situ passivation directed crystallization[J]. Advanced Materials, 2024, 36(41): 2408101.
|
13 |
MA Y Y, LI F M, GONG J, et al. Bi-molecular kinetic competition for surface passivation in high-performance perovskite solar cells[J]. Energy & Environmental Science, 2024, 17(4): 1570-1579.
|
14 |
GAO H, XIAO K, LIN R X, et al. Homogeneous crystallization and buried interface passivation for perovskite tandem solar modules[J]. Science, 2024, 383(6685): 855-859.
DOI
PMID
|
15 |
TU Y B, LI G D, YE J C, et al. Multifunctional imidazolidinyl urea additive initiated complex with PbI2 toward efficient and stable perovskite solar cells[J]. Small, 2024, 20(19): 2309033.
|
16 |
FENG Q F, HUANG X F, TANG Z H, et al. Governing PbI6 octahedral frameworks for high-stability perovskite solar modules[J]. Energy & Environmental Science, 2022, 15(10): 4404-4413.
|
17 |
ZHOU Q, HE D M, ZHUANG Q X, et al. Revealing steric-hindrance-dependent buried interface defect passivation mechanism in efficient and stable perovskite solar cells with mitigated tensile stress[J]. Advanced Functional Materials, 2022, 32(36): 2205507.
|
18 |
CAO S G, BI Z N, ZHENG T J, et al. Revealing interaction of fluorinated propylamine hydrochloride with precursor and defect states of perovskite films toward efficient flexible solar cells[J]. Advanced Functional Materials, 2024, 34(42): 2405078.
|
19 |
LIAO K J, LI C B, XIE L S, et al. Hot-casting large-grain perovskite film for efficient solar cells: film formation and device performance[J]. Nano-Micro Letters, 2020, 12(1): 156.
|
20 |
CHENG C D, YAO Y G, LI L, et al. A novel organic phosphonate additive induced stable and efficient perovskite solar cells with efficiency over 24% enabled by synergetic crystallization promotion and defect passivation[J]. Nano Letters, 2023, 23(19): 8850-8859.
|
21 |
WANG X Z, ZHAO Q Q, LI Z P, et al. Improved performance and stability of perovskite solar cells by iodine-immobilizing with small and flexible bis(amide) molecule[J]. Chemical Engineering Journal, 2023, 451: 138559.
|
22 |
WEN H X, ZHANG Z, GUO Y X, et al. Synergistic full-scale defect passivation enables high-efficiency and stable perovskite solar cells[J]. Advanced Energy Materials, 2023, 13(44): 2301813.
|
23 |
YANG Y, CHANG Q, YANG Y Y, et al. Multifunctional molecule interface modification for high-performance inverted wide-bandgap perovskite cells and modules[J]. Journal of Materials Chemistry A, 2023, 11(31): 16871-16877.
|
24 |
YI Z J, ZHANG W G, XIONG Y C, et al. Significant efficiency and stability enhancement of flexible perovskite solar cells combining with multifunctional effects of a natural spice[J]. Advanced Functional Materials, 2024, 34(9): 2310194.
|
25 |
XIE J S, HUANG K, YU X G, et al. Enhanced electronic properties of SnO2 via electron transfer from graphene quantum dots for efficient perovskite solar cells[J]. ACS Nano, 2017, 11(9): 9176-9182.
|
26 |
KIM M, KIM G H, LEE T K, et al. Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells[J]. Joule, 2019, 3(9): 2179-2192.
|
27 |
马逾辉. 缺陷钝化改善钙钛矿太阳能电池性能的研究[D]. 南京: 南京邮电大学, 2021.
|
|
MA Y H. Research on defects passivation in improving the performance of perovskite solar cells[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2021 (in Chinese).
|