1 |
CHEN X, JIA Z Y, CHEN Z, et al. Efficient and reproducible monolithic perovskite/organic tandem solar cells with low-loss interconnecting layers[J]. Joule, 2020, 4(7): 1594-1606.
|
2 |
YUN H S, KWON H W, PAIK M J, et al. Ethanol-based green-solution processing of α-formamidinium lead triiodide perovskite layers[J]. Nature Energy, 2022, 7: 828-834.
|
3 |
CHEN W J, LI D, CHEN S S, et al. Spatial distribution recast for organic bulk heterojunctions for high-performance all-inorganic perovskite/organic integrated solar cells[J]. Advanced Energy Materials, 2020, 10(35): 2000851.
|
4 |
LIU K K, LUO Y J, JIN Y B, et al. Moisture-triggered fast crystallization enables efficient and stable perovskite solar cells[J]. Nature Communications, 2022, 13(1): 4891.
DOI
PMID
|
5 |
GAO Y, XU W Z, ZHANG S W, et al. Double cascading charge transfer at integrated perovskite/organic bulk heterojunctions for extended near-infrared photoresponse and enhanced photocurrent[J]. Small, 2022, 18(12): 2106083.
|
6 |
GUO Q, BAI Y M, LANG K, et al. Expanding the light harvesting of CsPbI2Br to near infrared by integrating with organic bulk heterojunction for efficient and stable solar cells[J]. ACS Applied Materials & Interfaces, 2019, 11(41): 37991-37998.
|
7 |
BI H, ZUO X, LIU B B, et al. Multifunctional organic ammonium salt-modified SnO2 nanoparticles toward efficient and stable planar perovskite solar cells[J]. Journal of Materials Chemistry A, 2021, 9(7): 3940-3951.
|
8 |
LI Y, LIU L D, ZHENG C, et al. Plant-derived l-theanine for ultraviolet/ozone resistant perovskite photovoltaics[J]. Advanced Energy Materials, 2023, 13(3): 2203190.
|
9 |
ZHU P C, GU S, LUO X, et al. Simultaneous contact and grain-boundary passivation in planar perovskite solar cells using SnO2-KCl composite electron transport layer[J]. Advanced Energy Materials, 2020, 10(3): 1903083.
|
10 |
ZENG F C, XU L, XING J H, et al. Gas molecule assisted all-inorganic dual-interface passivation strategy for high-performance perovskite solar cells[J]. Advanced Science, 2024, 11(34): 2404444.
|
11 |
WANG M, LI L, WANG J H, et al. Accelerating direct formation of α-FAPbl3 by dual-additives synergism for inverted perovskite solar cells with efficiency exceeding 26%[J]. Chemical Engineering Journal, 2025, 505: 159056.
|
12 |
ZHENG Z H, LI F M, GONG J, et al. Pre-buried additive for cross-layer modification in flexible perovskite solar cells with efficiency exceeding 22%[J]. Advanced Materials, 2022, 34(21): 2109879.
|
13 |
DONG B T, WEI M Y, LI Y H, et al. Self-assembled bilayer for perovskite solar cells with improved tolerance against thermal stresses[J]. Nature Energy, 2025.
|
14 |
KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131(17): 6050-6051.
DOI
PMID
|
15 |
KIM H S, LEE C R, IM J H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Scientific Reports, 2012, 2: 591.
|
16 |
YU M, FAN L, WANG L X, et al. Charged defect management for high-efficiency planar solar cells: reducing charge recombination and open-circuit voltage loss by employing donor-acceptor molecules to regulate perovskite electronic properties[J]. Chemical Engineering Journal, 2025, 505: 159035.
|
17 |
KHAN A D, BASIT A, REHMAN Q, et al. Innovative designs for semitransparent carbon-based perovskite solar cells for building-integrated applications[J]. Solar Energy, 2024, 282: 112951.
|
18 |
ALI A, TIAN R J, WANG Y H, et al. Incorporation of small molecules with polar functional group to elevate crystallinity and suppress nonradiative recombination in perovskite solar cells[J]. Solar RRL, 2024, 8(15): 2400365.
|
19 |
YANG L, FENG J S, LIU Z K, et al. Record-efficiency flexible perovskite solar cells enabled by multifunctional organic ions interface passivation[J]. Advanced Materials, 2022, 34(24): e2201681.
|
20 |
KESHTMAND R, ZAMANI M M R, TAGHAVINIA N. Improving the performance of planar perovskite solar cell using NH4Cl treatment of SnO2 as electron transport layer[J]. Surfaces and Interfaces, 2022, 28: 101596.
|
21 |
ANARAKI E H, KERMANPUR A, STEIER L, et al. Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide[J]. Energy & Environmental Science, 2016, 9(10): 3128-3134.
|
22 |
JIN Y B, FENG H P, LI Y J, et al. Recrystallizing sputtered NiO x for improved hole extraction in perovskite/silicon tandem solar cells[J]. Advanced Energy Materials, 2024: 2403911.
|
23 |
JARIWALA S, KUMAR R E, EPERON G E, et al. Dimethylammonium addition to halide perovskite precursor increases vertical and lateral heterogeneity[J]. ACS Energy Letters, 2022, 7(1): 204-210.
|
24 |
XU R Y, SUN Y L, DAI J F, et al. Buried interface regulation for efficient and stable perovskite minimodules[J]. Nano Energy, 2025, 133: 110406.
|
25 |
ZHANG G D, ZHENG Y F, WANG H N, et al. Shellac protects perovskite solar cell modules under real-world conditions[J]. Joule, 2024, 8(2): 496-508.
|
26 |
KIM J Y, LEE J W, JUNG H S, et al. High-efficiency perovskite solar cells[J]. Chemical Reviews, 2020, 120(15): 7867-7918.
DOI
PMID
|
27 |
MARIANI P, MOLINA G M Á, BARICHELLO J, et al. Low-temperature strain-free encapsulation for perovskite solar cells and modules passing multifaceted accelerated ageing tests[J]. Nature Communications, 2024, 15(1): 4552.
DOI
PMID
|
28 |
LIAO C, TAO R M, WANG G L, et al. Gas quenched alternating cations in the interlayer space quasi-2D (GA)(MA)5Pb5I16 perovskite for radiation tolerant single junction and stable monolithic quasi-2D perovskite-silicon tandem solar cells[J]. ACS Energy Letters, 2024, 9(11): 5310-5318.
|
29 |
AFRAJ S N, VELUSAMY A, CHEN C Y, et al. Dicyclopentadithienothiophene (DCDTT)-based organic semiconductor assisted grain boundary passivation for highly efficient and stable perovskite solar cells[J]. Journal of Materials Chemistry A, 2022, 10(20): 11254-11267.
|
30 |
ZHANG C, FENG X Z, SONG Q L, et al. Blue-violet emission with near-unity photoluminescence quantum yield from Cu(I)-doped Rb3InCl6 single crystals[J]. The Journal of Physical Chemistry Letters, 2021, 12(33): 7928-7934.
|
31 |
YOO J J, SEO G, CHUA M R, et al. Efficient perovskite solar cells via improved carrier management[J]. Nature, 2021, 590(7847): 587-593.
|
32 |
SU X M, LIAN L Y, ZHANG C, et al. Enhanced photoluminescence of colloidal lead-free double perovskite Cs2Ag1- x Na x InCl6 nanocrystals doped with manganese[J]. Advanced Optical Materials, 2021, 9(15): 2001866.
|
33 |
MIN H, LEE D Y, KIM J, et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes[J]. Nature, 2021, 598(7881): 444-450.
|
34 |
JIANG Q, ZHAO Y, ZHANG X W, et al. Surface passivation of perovskite film for efficient solar cells[J]. Nature Photonics, 2019, 13: 460-466.
DOI
|
35 |
KUNDAR M, KUMAR P, SHARMA S K, et al. Stable perovskite solar cells based on direct surface passivation employing 2D perovskites[J]. Solar RRL, 2023, 7(23): 2300572.
|
36 |
XIA J M, LIANG C, MEI S L, et al. Deep surface passivation for efficient and hydrophobic perovskite solar cells[J]. Journal of Materials Chemistry A, 2021, 9(5): 2919-2927.
|
37 |
WU Y H, WANG Q, CHEN Y T, et al. Stable perovskite solar cells with 25.17% efficiency enabled by improving crystallization and passivating defects synergistically[J]. Energy & Environmental Science, 2022, 15(11): 4700-4709.
|
38 |
ZHANG X W, WANG Y, ZHANG K, et al. Reinforcing coverage of self-assembled monomolecular layers for inverted perovskite solar cells with efficiency of 25.70%[J]. Angewandte Chemie, 2025: e202423827.
|