人工晶体学报 ›› 2025, Vol. 54 ›› Issue (5): 721-736.DOI: 10.16553/j.cnki.issn1000-985x.2025.0054
• 特邀综述 • 下一篇
收稿日期:
2025-03-19
出版日期:
2025-05-15
发布日期:
2025-05-27
通信作者:
周 弘,博士,教授。E-mail:hongzhou@xidian.edu.cn作者简介:
周 敏(1999—),男,湖南省人,博士。E-mail:zhoumin@xidian.edu.cn
基金资助:
ZHOU Min(), ZHOU Hong(
), ZHANG Jincheng, HAO Yue
Received:
2025-03-19
Online:
2025-05-15
Published:
2025-05-27
摘要: 超宽禁带半导体材料氧化镓(β-Ga2O3)具备高临界击穿场强、高电子饱和速率等特性,同时具有熔体法生长的大尺寸单晶衬底,有望在未来电网、轨道交通、雷达通信等高压大功率领域得到广泛应用。虽然基于氧化镓材料的电子器件在国际上已经取得了快速发展,然而受限于氧化镓材料迁移率低、热导率差的原因,氧化镓基射频器件的研究相对滞后。本文首先剖析了高压射频功率器件的发展需求,包括更高的功率量级、更小更轻便的设备、更高效的系统。随后,从击穿场强、饱和速率、晶圆制造和热管理四个方面阐述了氧化镓材料适合做高压大功率射频器件的原因。接着,综述了国际上有关氧化镓基射频功率器件研究的相关进展,主要讨论了同、异质衬底金属氧化物半导体场效应晶体管(MOSFET),以及异质结场效应晶体管(HFET)三种类型的器件结构。最后,总结了目前氧化镓射频功率器件性能提升的两大挑战是热扩散能力差和电子迁移率低,并对未来该领域的研究方向进行了展望和建议,例如高导热衬底的异质集成、表面钝化技术研究、器件在极端环境下的可靠性问题等,为相关领域的研究人员提供参考。
中图分类号:
周敏, 周弘, 张进成, 郝跃. 氧化镓射频功率器件研究进展[J]. 人工晶体学报, 2025, 54(5): 721-736.
ZHOU Min, ZHOU Hong, ZHANG Jincheng, HAO Yue. Research Progress on β-Ga2O3 Radio Frequency Power Devices[J]. Journal of Synthetic Crystals, 2025, 54(5): 721-736.
材料 | Si | GaAs | 4H-SiC | GaN | β-Ga2O3 |
---|---|---|---|---|---|
带隙/eV | 1.1 | 1.4 | 3.3 | 3.4 | 4.5~4.9 |
电子迁移率/(cm2·V-1·s-1) | 1 400 | 8 000 | 1 000 | 1 250 | 200~250 |
临界击穿场强/(MV·cm-1) | 0.3 | 0.4 | 2.5 | 3.3 | 8 |
饱和速率/(107 cm·s-1) | 1 | 1.2 | 2 | 2.5 | 1.8~2 |
介电常数,ε | 11.8 | 12.9 | 9.4 | 9 | 10 |
热导率/(W·cm-1·K-1) | 1.5 | 0.5 | 4.9 | 2.3 | 0.109~0.27 |
BFOM= | 1 | 14.7 | 317 | 870 | 3 444 |
JFOM= | 1 | 1.8 | 278 | 1 089 | 2 844 |
BHFFOM= | 1 | 10.1 | 46.3 | 100.8 | 142.2 |
表1 β-Ga2O3与其他主流半导体材料特性对比[6,11]
Table 1 Comparison of β-Ga2O3 properties with other mainstream semiconductor materials[6,11]
材料 | Si | GaAs | 4H-SiC | GaN | β-Ga2O3 |
---|---|---|---|---|---|
带隙/eV | 1.1 | 1.4 | 3.3 | 3.4 | 4.5~4.9 |
电子迁移率/(cm2·V-1·s-1) | 1 400 | 8 000 | 1 000 | 1 250 | 200~250 |
临界击穿场强/(MV·cm-1) | 0.3 | 0.4 | 2.5 | 3.3 | 8 |
饱和速率/(107 cm·s-1) | 1 | 1.2 | 2 | 2.5 | 1.8~2 |
介电常数,ε | 11.8 | 12.9 | 9.4 | 9 | 10 |
热导率/(W·cm-1·K-1) | 1.5 | 0.5 | 4.9 | 2.3 | 0.109~0.27 |
BFOM= | 1 | 14.7 | 317 | 870 | 3 444 |
JFOM= | 1 | 1.8 | 278 | 1 089 | 2 844 |
BHFFOM= | 1 | 10.1 | 46.3 | 100.8 | 142.2 |
图4 根据JFOM品质因素对比了主流半导体在击穿电压与频率特性上的理论差异
Fig.4 Theoretical differences in breakdown voltage and frequency characteristics of mainstream semiconductors, according to JFOM
图5 几种有助于氧化镓散热的技术。(a)机械剥离[55];(b)万能离子刀[56];(c)flip-chip封装[60]
Fig.5 Several techniques that contribute to the heat dissipation of gallium oxide. (a) Mechanical exfoliation[55]; (b) smart-cut[56]; (c) flip-chip package[60]
图6 (a)β-Ga2O3 MOSFET器件结构图及聚焦离子束截面图;(b)0.8 GHz频率下β-Ga2O3 MOSFET的大信号功率特性[61]
Fig.6 (a) A cross section schematic and a focused ion beam (FIB) cross sectional image of β-Ga2O3 MOSFET device; (b) large-signal power properties of β-Ga2O3 MOSFET at the frequency of 0.8 GHz[61]
图7 (a)场板结构的β-Ga2O3 MOSFET器件结构图;(b)1 GHz频率下场板结构的β-Ga2O3 MOSFET器件的大信号功率特性[62]
Fig.7 (a) A cross section schematic of field-plated β-Ga2O3 MOSFET device; (b) large-signal power properties of field-plated β-Ga2O3 MOSFET at the frequency of 1 GHz[62]
图8 Delta掺杂的β-Ga2O3 MOSFET[64]。(a)器件结构图;(b)T型栅结构扫描电子显微镜图;(c)小信号频率特性
Fig.8 Detla-doped β-Ga2O3 MOSFET[64]. (a) A cross section schematic; (b) scanning electron microscope image of T-shaped gate structure; (c) small-signal frequency characteristics
图9 L波段β-Ga2O3 MOSFET[66]。(a)器件结构图;(b)脉冲模式下大信号特性。栅极下O2退火工艺处理的β-Ga2O3 MOSFET:(c)器件结构图;(d)功率扫描曲线
Fig.9 L-band β-Ga2O3 MOSFET[66]. (a) Schematic of the devic; (b) large-signal characteristics in pulsed mode. O2-annealing processed β-Ga2O3 MOSFET: (c) cross-sectional schematic of the device; (d) power sweep curve
图10 三种不同结构的β-Ga2O3 MOSFET器件结构示意图和小信号特性[69]。(a)、(b)类二维电子气沟道;(c)、(d)薄沟道T型栅结构;(e)、(f)为准二维高迁移率沟道
Fig.10 Schematic of device structure and small signal characteristics of three β-Ga2O3 MOSFETs with different structures[69]. (a),(b) 2DEG-like channel; (c),(d) thin-channel T-shaped gate structure; (e),(f) quasi-2D high mobility channel
图11 异质集成的Ga2O3-on-SiC MOSFET[73]。(a)器件结构示意图;(b)小信号频率特性;(c)2 GHz频率下大信号特性
Fig. 11 Heterointegrated Ga2O3-on-SiC MOSFETs[73]. (a) Schematic of device structure; (b) small-signal frequency characteristics; (c) large-signal characteristics at the frequency of 2 GHz
图12 高掺杂沟道的β-Ga2O3-on-SiC RF MOSFET[74]。(a)器件结构示意图;(b)小信号频率特性;(c)2 GHz频率下大信号特性
Fig.12 β-Ga2O3-on-SiC RF MOSFET with heavily doped channel[74]. (a) Schematic of device structure; (b) small-signal frequency characteristics; (c) large-signal characteristics at the frequency of 2 GHz
图13 叠层栅介质β-Ga2O3-on-SiC RF MOSFET[75]。(a)器件结构示意图;(b)小信号频率特性;(c)和(d)工作电压20 V及50 V下的大信号特性
Fig.13 β-Ga2O3-on-SiC RF MOSFET with bi-layer gate dielectric[75]. (a) Schematic of device structure; (b) small-signal frequency characteristics; (c) and (d) large-signal characteristics at VDS = 20 V and VDS = 50 V
图14 国际上具有代表性的基于β-(Al x Ga1-x )2O3/Ga2O3材料结构的氧化镓射频器件相关工作
Fig.14 Internationally representative works of Ga2O3 RF devices with β-(Al x Ga1-x )2O3/Ga2O3 material structure
Structure/substrate | LG/nm | gm/(mS·mm-1) | (fT·fmax-1)/GHz | Pout/(W·mm-1) | PAE | Reference |
---|---|---|---|---|---|---|
MOSFET/Ga2O3 | 700 | 21 | 3.3/12.9 | 0.23(CW, 800 MHz) | 6.3% | [ |
MOSFET/Ga2O3 | 140 | 25 | 5.1/17.1 | — | — | [ |
MOSFET/Ga2O3 | 2 000 | — | — | 0.13(Pulse, 1 GHz) | 12% | [ |
Delta-Doped MOSFET/Ga2O3 | 120 | 44 | 27/16 | — | — | [ |
MOSFET/Ga2O3 | 200 | 17 | 9/27 | — | — | [ |
MOSFET/Ga2O3 | 500 | 40 | — | 0.715(Pulse, 1 GHz) | 23.4% | [ |
MOSFET/Ga2O3 | 500 | 40 | — | 0.487(Pulse, 2 GHz) | 21.2% | [ |
MOSFET/Ga2O3 | 1 000 | 11 | 1.8/4.2 | 0.43(Pulse, 1 GHz) | 12% | [ |
FinFET/Ga2O3 | 350 | 14.3 | 5.4/11/4 | — | — | [ |
2DEG-like Channel MOSFET/Ga2O3 | 150 | 25 | 29/35 | — | 9.11% | [ |
thin channel MOSFET/Ga2O3 | 175 | 52 | 11/48 | — | — | [ |
thin channel MOSFET/Ga2O3 | 90 | 36 | 27/55 | — | — | [ |
Quasi-2D channel MOSFET/Ga2O3 | 900 | 54.2 | 18/42 | — | — | [ |
HFET/Ga2O3 | 610 | — | 4/11.8 | — | — | [ |
HFET/Ga2O3 | 160 | 64 | 30/37 | — | — | [ |
Back-barrier MOSFET/Ga2O3 | 150 | 18 | 10/24 | — | — | [ |
Heterointegrated MOSFET/SiC | 100 | 57 | 47/51 | 0.296(CW, 2 GHz) | 25.7% | [ |
Heavily doped channel MOSFET/SiC | 180 | 70 | 27.6/57 | 2.3(CW, 2 GHz) 1.5(CW, 3 GHz) 1.3(CW, 5 GHz) 0.7(CW, 8 GHz) | 31% 25% 17% 7% | [ |
MOSFET with bi-layer gate dielectrics/SiC | 300 | 80 | 24/71 | 1.4(Pulse, 2 GHz) 3.1(Pulse, 2 GHz) 2.3(Pulse, 4 GHz) | 50.8% 28% 23% | [ |
表2 先进的β-Ga2O3射频器件总结
Table 2 The summary of advanced β-Ga2O3 RF devices
Structure/substrate | LG/nm | gm/(mS·mm-1) | (fT·fmax-1)/GHz | Pout/(W·mm-1) | PAE | Reference |
---|---|---|---|---|---|---|
MOSFET/Ga2O3 | 700 | 21 | 3.3/12.9 | 0.23(CW, 800 MHz) | 6.3% | [ |
MOSFET/Ga2O3 | 140 | 25 | 5.1/17.1 | — | — | [ |
MOSFET/Ga2O3 | 2 000 | — | — | 0.13(Pulse, 1 GHz) | 12% | [ |
Delta-Doped MOSFET/Ga2O3 | 120 | 44 | 27/16 | — | — | [ |
MOSFET/Ga2O3 | 200 | 17 | 9/27 | — | — | [ |
MOSFET/Ga2O3 | 500 | 40 | — | 0.715(Pulse, 1 GHz) | 23.4% | [ |
MOSFET/Ga2O3 | 500 | 40 | — | 0.487(Pulse, 2 GHz) | 21.2% | [ |
MOSFET/Ga2O3 | 1 000 | 11 | 1.8/4.2 | 0.43(Pulse, 1 GHz) | 12% | [ |
FinFET/Ga2O3 | 350 | 14.3 | 5.4/11/4 | — | — | [ |
2DEG-like Channel MOSFET/Ga2O3 | 150 | 25 | 29/35 | — | 9.11% | [ |
thin channel MOSFET/Ga2O3 | 175 | 52 | 11/48 | — | — | [ |
thin channel MOSFET/Ga2O3 | 90 | 36 | 27/55 | — | — | [ |
Quasi-2D channel MOSFET/Ga2O3 | 900 | 54.2 | 18/42 | — | — | [ |
HFET/Ga2O3 | 610 | — | 4/11.8 | — | — | [ |
HFET/Ga2O3 | 160 | 64 | 30/37 | — | — | [ |
Back-barrier MOSFET/Ga2O3 | 150 | 18 | 10/24 | — | — | [ |
Heterointegrated MOSFET/SiC | 100 | 57 | 47/51 | 0.296(CW, 2 GHz) | 25.7% | [ |
Heavily doped channel MOSFET/SiC | 180 | 70 | 27.6/57 | 2.3(CW, 2 GHz) 1.5(CW, 3 GHz) 1.3(CW, 5 GHz) 0.7(CW, 8 GHz) | 31% 25% 17% 7% | [ |
MOSFET with bi-layer gate dielectrics/SiC | 300 | 80 | 24/71 | 1.4(Pulse, 2 GHz) 3.1(Pulse, 2 GHz) 2.3(Pulse, 4 GHz) | 50.8% 28% 23% | [ |
图15 氧化镓射频器件与氮化镓射频器件的性能对比。(a)频率特性;(b)功率特性(6 GHz以下)
Fig.15 Performance comparison between Ga2O3 RF devices and GaN RF devices. (a) Frequency characteristics; (b) power characteristics (sub-6 GHz)
1 | Accelerated adoption of RF GaN in Telecom Infrastructure as opportunities for GaN-on-Si?[EB/OL]. https://medias.yolegroup.com/uploads/2023/06/accelerated-adoption-of-gan-rf-in-telecom-infrastructure-as-opportunities-for-gan-on-si-cs-mantech.pdf. |
2 | GIACOMO M. Solid state RF amplifiers for accelerator applications[C]. Particle Accelerator Conference (PAC 09), 2009. |
3 | FORMICONE G, BURGER J, CUSTER J, et al. Solid-state RF power amplifiers for ISM CW applications based on 100 V GaN technology[C]// 2016 11th European Microwave Integrated Circuits Conference (EuMIC). October 3-4, 2016, London, UK. IEEE, 2016: 33-36. |
4 | FORMICONE G, CUSTER J, BURGER J. First demonstration of a GaN-SiC RF technology operating above 100 V in S-band[C]. International Conference on Compound Semiconductor Manufacturing Technology, 2017. |
5 | FORMICONE G F. A highly manufacturable 75-150 VDC GaN-SiC RF technology for radars and particle accelerators[J]. IEEE Transactions on Semiconductor Manufacturing, 2018, 31(4): 440-446. |
6 | HIGASHIWAKI M, SASAKI K, MURAKAMI H, et al. Recent progress in Ga2O3 power devices[J]. Semiconductor Science and Technology, 2016, 31(3): 034001. |
7 | GELLER S. Crystal structure of β‐Ga2O3 [J]. The Journal of Chemical Physics, 1960, 33(3): 676-684. |
8 | ÅHMAN J, SVENSSON G, ALBERTSSON J. A reinvestigation of β-gallium oxide[J]. Acta Crystallographica Section C, 1996, 52(6): 1336-1338. |
9 | UEDA N, HOSONO H, WASEDA R, et al. Anisotropy of electrical and optical properties in β-Ga2O3 single crystals[J]. Applied Physics Letters, 1997, 71(7): 933-935. |
10 | MOCK A, KORLACKI R, BRILEY C, et al. Band-to-band transitions, selection rules, effective mass, and excitonic contributions in monoclinic β-Ga2O3 [J]. Physical Review B, 2017, 96(24): 245205. |
11 | MAIMON O, LI Q L. Progress in gallium oxide field-effect transistors for high-power and RF applications[J]. Materials, 2023, 16(24): 7693. |
12 | GREEN B, MOORE K, HILL D, et al. GaN RF device technology and applications, present and future[C]// 2013 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM). September 30 - October 3, 2013, Bordeaux, France. IEEE, 2013: 101-106. |
13 | ZHOU H, YAN Q L, ZHANG J C, et al. High-performance vertical β-Ga2O3 Schottky barrier diode with implanted edge termination[J]. IEEE Electron Device Letters, 2019, 40(11): 1788-1791. |
14 | LIN C H, YUDA Y, WONG M H, et al. Vertical Ga2O3 Schottky barrier diodes with guard ring formed by nitrogen-ion implantation[J]. IEEE Electron Device Letters, 2019, 40(9): 1487-1490. |
15 | HU Z Z, LV Y J, ZHAO C Y, et al. Beveled fluoride plasma treatment for vertical β-Ga2O3 Schottky barrier diode with high reverse blocking voltage and low turn-on voltage[J]. IEEE Electron Device Letters, 2020, 41(3): 441-444. |
16 | ZHANG Y N, ZHANG J C, FENG Z Q, et al. Impact of implanted edge termination on vertical β-Ga2O3 Schottky barrier diodes under OFF-state stressing[J]. IEEE Transactions on Electron Devices, 2020, 67(10): 3948-3953. |
17 | HAN Z, JIAN G Z, ZHOU X Z, et al. 2.7 kV low leakage vertical PtO x /β-Ga2O3 Schottky barrier diodes with self-aligned mesa termination[J]. IEEE Electron Device Letters, 2023, 44(10): 1680-1683. |
18 | DONG P F, ZHANG J C, YAN Q L, et al. 6 kV/3.4 mΩ·cm2 vertical β-Ga2O3 Schottky barrier diode with BV2/Ron,sp performance exceeding 1-D unipolar limit of GaN and SiC[J]. IEEE Electron Device Letters, 2022, 43(5): 765-768. |
19 | KONISHI K, GOTO K, MURAKAMI H, et al. 1-kV vertical Ga2O3 field-plated Schottky barrier diodes[J]. Applied Physics Letters, 2017, 110(10): 103506. |
20 | YANG J C, REN F, TADJER M, et al. 2 300 V reverse breakdown voltage Ga2O3 Schottky rectifiers[J]. ECS Journal of Solid State Science and Technology, 2018, 7(5): Q92-Q96. |
21 | HU Z Y, NOMOTO K, LI W S, et al. Enhancement-mode Ga2O3 vertical transistors with breakdown voltage >1 kV[J]. IEEE Electron Device Letters, 2018, 39(6): 869-872. |
22 | ROY S, BHATTACHARYYA A, RANGA P, et al. High-k oxide field-plated vertical (001) β-Ga2O3 Schottky barrier diode with Baliga’s figure of merit over 1 GW/cm2 [J]. IEEE Electron Device Letters, 2021, 42(8): 1140-1143. |
23 | QIN Y, XIAO M, PORTER M, et al. 10-kV Ga2O3 charge-balance Schottky rectifier operational at 200 ℃[J]. IEEE Electron Device Letters, 2023, 44(8): 1268-1271. |
24 | LV Y J, WANG Y G, FU X C, et al. Demonstration of β-Ga2O3 junction barrier Schottky diodes with a Baliga’s figure of merit of 0.85 GW/cm or a 5 A/700 V handling capabilities[J]. IEEE Transactions on Power Electronics, 2021, 36(6): 6179-6182. |
25 | YAN Q L, GONG H H, ZHANG J C, et al. β-Ga2O3 hetero-junction barrier Schottky diode with reverse leakage current modulation and BV2/Ron,sp value of 0.93 GW/cm2 [J]. Applied Physics Letters, 2021, 118(12): 122102. |
26 | ZHANG J C, DONG P F, DANG K, et al. Ultra-wide bandgap semiconductor Ga2O3 power diodes[J]. Nature Communications, 2022, 13(1): 3900. |
27 | YAN Q L, GONG H H, ZHOU H, et al. Low density of interface trap states and temperature dependence study of Ga2O3 Schottky barrier diode with p-NiO x termination[J]. Applied Physics Letters, 2022, 120(9): 092106. |
28 | WANG C L, YAN Q L, ZHANG C Q, et al. β-Ga₂O₃ lateral Schottky barrier diodes with > 10 kV breakdown voltage and anode engineering[J]. IEEE Electron Device Letters, 2023, 44(10): 1684-1687. |
29 | WONG M H, SASAKI K, KURAMATA A, et al. Field-plated Ga2O3 MOSFETs with a breakdown voltage of over 750 V[J]. IEEE Electron Device Letters, 2016, 37(2): 212-215. |
30 | ZENG K, VAIDYA A, SINGISETTI U. 1.85 kV breakdown voltage in lateral field-plated Ga2O3 MOSFETs[J]. IEEE Electron Device Letters, 2018, 39(9): 1385-1388. |
31 | LV Y J, ZHOU X Y, LONG S B, et al. Source-field-plated β-Ga2O3 MOSFET with record power figure of merit of 50.4 MW/cm2 [J]. IEEE Electron Device Letters, 2019, 40(1): 83-86. |
32 | TETZNER K, BAHAT TREIDEL E, HILT O, et al. Lateral 1.8 kV β-Ga2O3 MOSFET with 155 MW/cm2 power figure of merit[J]. IEEE Electron Device Letters, 2019, 40(9): 1503-1506. |
33 | LV Y J, LIU H Y, ZHOU X Y, et al. Lateral β-Ga2O3 MOSFETs with high power figure of merit of 277 MW/cm2 [J]. IEEE Electron Device Letters, 2020, 41(4): 537-540. |
34 | FENG Z Q, CAI Y C, LI Z, et al. Design and fabrication of field-plated normally off β-Ga2O3 MOSFET with laminated-ferroelectric charge storage gate for high power application[J]. Applied Physics Letters, 2020, 116(24): 243503. |
35 | KALARICKAL N K, XIA Z B, HUANG H L, et al. β-(Al0.18Ga0.82)2O3/Ga2O3 double heterojunction transistor with average field of 5.5 MV/cm[J]. IEEE Electron Device Letters, 2021, 42(6): 899-902. |
36 | WANG C L, GONG H H, LEI W N, et al. Demonstration of the p-NiO x /n-Ga2O3 heterojunction gate FETs and diodes with BV2/Ron,sp figures of merit of 0.39 GW/cm2 and 1.38 GW/cm2 [J]. IEEE Electron Device Letters, 2021, 42(4): 485-488. |
37 | WANG C L, YAN Q L, SU C X, et al. Demonstration of the β-Ga₂O₃ MOS-JFETs with suppressed gate leakage current and large gate swing[J]. IEEE Electron Device Letters, 2023, 44(3): 380-383. |
38 | CHABAK K D, MCCANDLESS J P, MOSER N A, et al. Recessed-gate enhancement-mode β-Ga2O3 MOSFETs[J]. IEEE Electron Device Letters, 2018, 39(1): 67-70. |
39 | CHABAK K D, MOSER N, GREEN A J, et al. Enhancement-mode Ga2O3 wrap-gate fin field-effect transistors on native (100) β-Ga2O3 substrate with high breakdown voltage[J]. Applied Physics Letters, 2016, 109(21): 213501. |
40 | LIU H Y, WANG Y G, LV Y J, et al. 10-kV lateral β-Ga₂O₃ MESFETs with B ion implanted planar isolation[J]. IEEE Electron Device Letters, 2023, 44(7): 1048-1051. |
41 | MOSER N, LIDDY K, ISLAM A, et al. Toward high voltage radio frequency devices in β-Ga2O3 [J]. Applied Physics Letters, 2020, 117(24): 242101. |
42 | ZHOU H. GaN MOS devices with atomic layer epitaxy dielectric and its next generation high power beta-Ga2O3 on insulators FETs[D]. West Lafayette: Purdue University, 2017. |
43 | TOMM Y, REICHE P, KLIMM D, et al. Czochralski grown Ga2O3 crystals[J]. Journal of Crystal Growth, 2000, 220(4): 510-514. |
44 | GALAZKA Z, UECKER R, IRMSCHER K, et al. Czochralski growth and characterization of β-Ga2O3 single crystals[J]. Crystal Research and Technology, 2010, 45(12): 1229-1236. |
45 | GALAZKA Z, IRMSCHER K, UECKER R, et al. On the bulk β-Ga2O3 single crystals grown by the Czochralski method[J]. Journal of Crystal Growth, 2014, 404: 184-191. |
46 | GALAZKA Z, UECKER R, KLIMM D, et al. Scaling-up of bulk β-Ga2O3 single crystals by the czochralski method[J]. ECS Journal of Solid State Science and Technology, 2017, 6(2): Q3007-Q3011. |
47 | HIGASHIWAKI M, JESSEN G H. Guest editorial: the dawn of gallium oxide microelectronics[J]. Applied Physics Letters, 2018, 112(6): 060401. |
48 | FU B, MU W X, ZHANG J, et al. A study on the technical improvement and the crystalline quality optimization of columnar β-Ga2O3 crystal growth by an EFG method[J]. CrystEngComm, 2020, 22(30): 5060-5066. |
49 | FU B, JIAN G Z, MU W X, et al. Crystal growth and design of Sn-doped β-Ga2O3: morphology, defect and property studies of cylindrical crystal by EFG[J]. Journal of Alloys and Compounds, 2022, 896: 162830. |
50 | HOSHIKAWA K, OHBA E, KOBAYASHI T, et al. Growth of β-Ga2O3 single crystals using vertical Bridgman method in ambient air[J]. Journal of Crystal Growth, 2016, 447: 36-41. |
51 | HOSHIKAWA K, KOBAYASHI T, MATSUKI Y, et al. 2-inch diameter (100) β-Ga2O3 crystal growth by the vertical Bridgman technique in a resistance heating furnace in ambient air[J]. Journal of Crystal Growth, 2020, 545: 125724. |
52 | OHBA E, KOBAYASHI T, TAISHI T, et al. Growth of (100), (010) and (001) β-Ga2O3 single crystals by vertical Bridgman method[J]. Journal of Crystal Growth, 2021, 556: 125990. |
53 | ZHANG J G, LI B, XIA C T, et al. Growth and spectral characterization of β-Ga2O3 single crystals[J]. Journal of Physics and Chemistry of Solids, 2006, 67(12): 2448-2451. |
54 | ZHANG J G, LI B, XIA C T, et al. Single crystal β-Ga2O3∶ Cr grown by floating zone technique and its optical properties[J]. Science in China Series E: Technological Sciences, 2007, 50(1): 51-56. |
55 | NOH J, ALAJLOUNI S, TADJER M J, et al. High performance: Ga2O3 nano-membrane field effect transistors on a high thermal conductivity diamond substrate[J]. IEEE Journal of the Electron Devices Society, 2019, 7: 914-918. |
56 | XU W H, YOU T G, MU F W, et al. Thermodynamics of ion-cutting of β-Ga2O3 and wafer-scale heterogeneous integration of a β-Ga2O3 thin film onto a highly thermal conductive SiC substrate[J]. ACS Applied Electronic Materials, 2022, 4(1): 494-502. |
57 | LIN C H, HATTA N, KONISHI K, et al. Single-crystal-Ga2O3/polycrystalline-SiC bonded substrate with low thermal and electrical resistances at the heterointerface[J]. Applied Physics Letters, 2019, 114(3): 032103. |
58 | XU W H, ZHANG Y H, HAO Y, et al. First demonstration of waferscale heterogeneous integration of Ga2O3 MOSFETs on SiC and Si substrates by ion-cutting process[C]// 2019 IEEE International Electron Devices Meeting (IEDM). December 7-11, 2019. FranciscoSan, CA, USA. IEEE, 2019: 12. 5.1-12.5.4. |
59 | XU W H, YOU T G, WANG Y B, et al. Efficient thermal dissipation in wafer-scale heterogeneous integration of single-crystalline β-Ga2O3 thin film on SiC[J]. Fundamental Research, 2021, 1(6): 691-696. |
60 | XIAO M, WANG B Y, LIU J C, et al. Packaged Ga2O3 Schottky rectifiers with over 60-a surge current capability[J]. IEEE Transactions on Power Electronics, 2021, 36(8): 8565-8569. |
61 | GREEN A J, CHABAK K D, BALDINI M, et al. β-Ga2O3 MOSFETs for radio frequency operation[J]. IEEE Electron Device Letters, 2017, 38(6): 790-793. |
62 | SINGH M, CASBON M A, UREN M J, et al. Pulsed large signal RF performance of field-plated Ga2O3 MOSFETs[J]. IEEE Electron Device Letters, 2018, 39(10): 1572-1575. |
63 | CHABAK K D, WALKER D E, GREEN A J, et al. Sub-micron gallium oxide radio frequency field-effect transistors[C]// 2018 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP). July 16-18, 2018, Ann Arbor, MI, USA. IEEE, 2018: 1-3. |
64 | XIA Z B, XUE H, JOISHI C, et al. β-Ga2O3 delta-doped field-effect transistors with current gain cutoff frequency of 27 GHz[J]. IEEE Electron Device Letters, 2019, 40(7): 1052-1055. |
65 | KAMIMURA T, NAKATA Y, HIGASHIWAKI M. Delay-time analysis in radio-frequency β-Ga2O3 field effect transistors[J]. Applied Physics Letters, 2020, 117(25): 253501. |
66 | MOSER N A, ASEL T, LIDDY K J, et al. Pulsed power performance of β-Ga2O3 MOSFETs at L-band[J]. IEEE Electron Device Letters, 2020, 41(7): 989-992. |
67 | LV Y J, LIU H Y, WANG Y G, et al. Oxygen annealing impact on β-Ga2O3 MOSFETs: improved pinch-off characteristic and output power density[J]. Applied Physics Letters, 2020, 117(13): 133503. |
68 | YU X X, GONG H H, ZHOU J J, et al. RF performance enhancement in sub-μm scaled β-Ga2O3 tri-gate FinFETs[J]. Applied Physics Letters, 2022, 121(7): 072102. |
69 | YU X X, GONG H H, ZHOU J J, et al. High-voltage β-Ga2O3 RF MOSFETs with a shallowly-implanted 2DEG-like channel[J]. IEEE Electron Device Letters, 2023, 44(7): 1060-1063. |
70 | SAHA C N, VAIDYA A, BHUIYAN A F M A U, et al. Scaled β-Ga2O3 thin channel MOSFET with 5.4 MV/cm average breakdown field and near 50 GHz fMAX[J]. Applied Physics Letters, 2023, 122(18): 182106. |
71 | SAHA C N, VAIDYA A, NIPU N J, et al. Thin channel Ga2O3 MOSFET with 55 GHz fMAX and >100 V breakdown[J]. Applied Physics Letters, 2024, 125(6): 062101. |
72 | WANG X C, LU X L, HE Y L, et al. Quasi-2D high mobility channel E-mode β-Ga2O3 MOSFET with Johnson FOM of 7.56 THz·V[J]. Applied Physics Letters, 2024, 125(6): 063505. |
73 | YU X X, XU W H, WANG Y B, et al. Heterointegrated Ga2O3-on-SiC RF MOSFETs with fT/fmax of 47/51 GHz by ion-cutting process[J]. IEEE Electron Device Letters, 2023, 44(12): 1951-1954. |
74 | ZHOU M, ZHOU H, HUANG S, et al. 1.1 A/mm 1.1 A/mm ß-Ga2O3-on-SiC RF MOSFETs with 2.3 W/mm Pout and 30% PAE at 2 GHz and fT/fmax of 27.6/57 GHz[C]// 2023 International Electron Devices Meeting (IEDM). December 9-13, 2023, San Francisco, CA, USA. IEEE, 2023: 1-4. |
75 | ZHOU M, ZHOU H, MENGWEI S, et al. 71 GHz-fmax β-Ga2O3-on-SiC RF power MOSFETs with record Pout=3.1 W/mm and PAE=50.8% at 2 GHz, Pout=2.3 W/mm at 4 GHz, and low microwave noise figure[C]// 2024 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits). June 16-20, 2024, Honolulu, HI, USA. IEEE, 2024: 1-2. |
76 | ZHANG Y, NEAL A, XIA Z, et al. Demonstration of high mobility and quantum transport in modulation-doped β-(Al x Ga1- x )2O3/Ga2O3 heterostructures[J]. Applied Physics Letters, 2018, 112(17). |
77 | ZHANG Y W, XIA Z B, MCGLONE J, et al. Evaluation of low-temperature saturation velocity in β-(Al x Ga1- x )2O3/Ga2O3 modulation-doped field-effect transistors[J]. IEEE Transactions on Electron Devices, 2019, 66(3): 1574-1578. |
78 | JESSEN G H, FITCH R C, GILLESPIE J K, et al. Short-channel effect limitations on high-frequency operation of AlGaN/GaN HEMTs for T-gate devices[J]. IEEE Transactions on Electron Devices, 2007, 54(10): 2589-2597. |
79 | SHINOHARA K, REGAN D, MILOSAVLJEVIC I, et al. Electron velocity enhancement in laterally scaled GaN DH-HEMTs with fT of 260 GHz[J]. IEEE Electron Device Letters, 2011, 32(8): 1074-1076. |
80 | VAIDYA A, SAHA C N, SINGISETTI U. Enhancement mode β-(Al x Ga1- x )2O3/Ga2O3 heterostructure FET (HFET) with high transconductance and cutoff frequency[J]. IEEE Electron Device Letters, 2021, 42(10): 1444-1447. |
81 | SAHA C N, VAIDYA A, SINGISETTI U. Temperature dependent pulsed IV and RF characterization of β-(Al x Ga1- x )2O3/Ga2O3 hetero-structure FET with ex situ passivation[J]. Applied Physics Letters, 2022, 120(17): 7. |
82 | OHTSUKI T, KAMIMURA T, HIGASHIWAKI M. Suppression of drain current leakage and short-channel effect in lateral Ga2O3 RF MOSFETs using (Al x Ga1- x )2O3 back-barrier[J]. IEEE Electron Device Letters, 2023, 44(11): 1829-1832. |
83 | DHEENAN A V, MCGLONE J F, KALARICKAL N K, et al. β-Ga2O3 MESFETs with insulating Mg-doped buffer grown by plasma-assisted molecular beam epitaxy[J]. Applied Physics Letters, 2022, 121(11): 113503. |
84 | ATMACA G, CHA H Y. Enhancement mode β-(Al0.19Ga0.81)2O3/Ga2O3 HFETs with superlattice back-barrier layer[J]. Micro and Nanostructures, 2024, 189: 207802. |
[1] | 韩宇, 焦腾, 于含, 赛青林, 陈端阳, 李震, 李轶涵, 张钊, 董鑫. 衬底晶面对MOCVD同质外延生长n-Ga2O3薄膜性质的影响研究[J]. 人工晶体学报, 2025, 54(3): 438-444. |
[2] | 陈俊宏, 胡鉴闻, 魏钟鸣. 基于氧化镓微纳米结构的探测器研究进展[J]. 人工晶体学报, 2025, 54(3): 491-510. |
[3] | 王君岚, 李早阳, 杨垚, 祁冲冲, 刘立军. 导模法生长6英寸氧化镓单晶的结晶界面变形度评估与控制研究[J]. 人工晶体学报, 2025, 54(3): 396-406. |
[4] | 文俊棚, 郝伟兵, 韩照, 徐光伟, 龙世兵. 氧化镍/氧化镓异质结二极管台面终端技术研究[J]. 人工晶体学报, 2025, 54(3): 517-523. |
[5] | 王月飞, 高冲, 吴哲, 李炳生, 刘益春. 双生长腔互联MOCVD外延生长氧化镓异质结构及其紫外光电探测器件的研究[J]. 人工晶体学报, 2025, 54(3): 426-437. |
[6] | 殷长帅, 孟标, 梁康, 崔翰文, 刘胜, 张召富. 采用不同辐射传热模型模拟氧化镓单晶生长热场的对比研究[J]. 人工晶体学报, 2025, 54(3): 386-395. |
[7] | 瞿振宇, 徐文慧, 江昊东, 梁恒硕, 赵天成, 谢银飞, 孙华锐, 邹新波, 游天桂, 齐红基, 韩根全, 欧欣. 氧化镓异质衬底集成技术研究进展[J]. 人工晶体学报, 2025, 54(3): 470-490. |
[8] | 杨文娟, 卜予哲, 赛青林, 齐红基. 导模法生长氧化镓晶体中的位错缺陷及其分布特点[J]. 人工晶体学报, 2025, 54(3): 414-419. |
[9] | 孙汝军, 张晶辉, 李一帆, 郝跃, 张进成. Mg掺杂氧化镓研究进展[J]. 人工晶体学报, 2025, 54(3): 361-370. |
[10] | 贺松, 刘金杨, 郝伟兵, 徐光伟, 龙世兵. 台面终端氧化镓肖特基二极管单粒子效应研究[J]. 人工晶体学报, 2025, 54(3): 511-516. |
[11] | 严宇超, 王琤, 陆昌程, 刘莹莹, 夏宁, 金竹, 张辉, 杨德仁. 2英寸Fe掺杂高阻β相氧化镓单晶生长及(010)衬底性质研究[J]. 人工晶体学报, 2025, 54(2): 197-201. |
[12] | 屈珉敏, 余建刚, 李子唯, 李旺旺, 雷程, 李腾腾, 李丰超, 梁庭, 贾仁需. 新型复合终端氧化镓肖特基二极管电学特性仿真研究[J]. 人工晶体学报, 2025, 54(2): 348-357. |
[13] | 谢银飞, 何阳, 刘伟业, 徐文慧, 游天桂, 欧欣, 郭怀新, 孙华锐. 超宽带隙氧化镓功率器件热管理的研究进展[J]. 人工晶体学报, 2025, 54(2): 290-311. |
[14] | 丁子舰, 颜世琪, 徐希凡, 辛倩. 脉冲激光沉积α相氧化镓薄膜及其日盲光电探测器[J]. 人工晶体学报, 2025, 54(2): 329-336. |
[15] | 邵双尧, 杨烁, 冯华钰, 贾志泰, 陶绪堂. 氧化镓雪崩光电探测器的研究进展[J]. 人工晶体学报, 2025, 54(2): 276-289. |
阅读次数 | |||||||||||||
全文 |
|
||||||||||||
摘要 |
|
||||||||||||