[1] GAO S, HUANG H. Recent advances in micro- and nano-machining technologies[J]. Frontiers of Mechanical Engineering, 2017, 12(1): 18-32. [2] YANG L L, WEI J T, MA Z, et al. The fabrication of micro/nano structures by laser machining[J]. Nanomaterials, 2019, 9(12): 1789. [3] FANG F Z, XU F F. Recent advances in micro/nano-cutting: effect of tool edge and material properties[J]. Nanomanufacturing and Metrology, 2018, 1(1): 4-31. [4] 武晓龙, 马玉平, 王海航, 等. 微孔超精密加工研究进展[J]. 机械科学与技术, 2021, 40(12): 1913-1928. WU X L, MA Y P, WANG H H, et al. Progress in ultra-precision machining of micro hole[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(12): 1913-1928 (in Chinese). [5] YUAN J L, LYU B H, HANG W, et al. Review on the progress of ultra-precision machining technologies[J]. Frontiers of Mechanical Engineering, 2017, 12(2): 158-180. [6] RAO P, BUKKAPATNAM S, BEYCA O, et al. Real-time identification of incipient surface morphology variations in ultraprecision machining process[J]. Journal of Manufacturing Science and Engineering, 2014, 136(2): 021008. [7] SON S M, LIM H S, AHN J H. Effects of the friction coefficient on the minimum cutting thickness in micro cutting[J]. International Journal of Machine Tools and Manufacture, 2005, 45(4/5): 529-535. [8] GUO Y F, LEE Y J, ZHANG Y, et al. Magneto-plasticity in micro-cutting of single-crystal copper[J]. Journal of Materials Science & Technology, 2022, 124: 121-134. [9] 杨 萍, 孙益民. 分子动力学模拟方法及其应用[J]. 安徽师范大学学报(自然科学版), 2009, 32(1): 51-54. YANG P, SUN Y M. Method of molecular dynamics simulation and its application[J]. Journal of Anhui Normal University (Natural Science), 2009, 32(1): 51-54 (in Chinese). [10] CHAVOSHI S Z, GOEL S, LUO X C. Influence of temperature on the anisotropic cutting behaviour of single crystal silicon: a molecular dynamics simulation investigation[J]. Journal of Manufacturing Processes, 2016, 23: 201-210. [11] MENG B B, YUAN D D, XU S L. Study on strain rate and heat effect on the removal mechanism of SiC during nano-scratching process by molecular dynamics simulation[J]. International Journal of Mechanical Sciences, 2019, 151: 724-732. [12] LI Y L, YANG X J, DENG J Y, et al. Effect of indenter radius on mechanical properties of B3-GaN in nanoindentation based on molecular dynamics[J]. Materials Today Communications, 2023, 35: 106134. [13] 马世泽, 付 婷, 曾良才, 等. 单晶硅纳米切削过程中微沟槽结构金刚石刀具切削性能的分子动力学模拟[J]. 武汉科技大学学报, 2023, 46(1): 47-52. MA S Z, FU T, ZENG L C, et al. Molecular dynamics simulation for cutting performance of diamond tool with micro-groove structure in nanometric cutting of monocrystalline silicon[J]. Journal of Wuhan University of Science and Technology, 2023, 46(1): 47-52 (in Chinese). [14] TIWARI A, NATARAJAN S, et al. Index[M]//Applied Nanoindentation in Advanced Materials. Chichester, UK: John Wiley & Sons, Ltd, 2017: 663-680. [15] LI C, ZHANG F H, MENG B B, et al. Research of material removal and deformation mechanism for single crystal GGG (Gd3Ga5O12) based on varied-depth nanoscratch testing[J]. Materials & Design, 2017, 125: 180-188. [16] GE M R, ZHU H T, HUANG C Z, et al. Investigation on critical crack-free cutting depth for single crystal silicon slicing with fixed abrasive wire saw based on the scratching machining experiments[J]. Materials Science in Semiconductor Processing, 2018, 74: 261-266. [17] 杨晓京, 赵 彪, 罗 良. 基于纳米划痕的单晶锗脆塑转变实验研究[J]. 稀有金属材料与工程, 2018, 47(10): 3228-3232. YANG X J, ZHAO B, LUO L. Experimental research on brittle-ductile transition of single crystal germanium based on nano-scratch[J]. Rare Metal Materials and Engineering, 2018, 47(10): 3228-3232 (in Chinese). [18] 郜 伟, 张银霞, 黄鹏举. 基于不同纳米划痕顺序的6H-SiC单晶片材料去除机理研究[J]. 金刚石与磨料磨具工程, 2021, 41(4): 92-97. GAO W, ZHANG Y X, HUANG P J. Study on material removal mechanism of 6H-SiC single crystal wafer based on different nano-scratch order[J]. Diamond & Abrasives Engineering, 2021, 41(4): 92-97 (in Chinese). [19] OLIVER W C, PHARR G M. Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology[J]. Journal of Materials Research, 2004, 19(1): 3-20. [20] DOMNICH V, GOGOTSI Y, DUB S. Effect of phase transformations on the shape of the unloading curve in the nanoindentation of silicon[J]. Applied Physics Letters, 2000, 76(16): 2214-2216. [21] SAKA H, SHIMATANI A, SUGANUMA M, et al. Transmission electron microscopy of amorphization and phase transformation beneath indents in Si[J]. Philosophical Magazine A, 2002, 82(10): 1971-1981. [22] 张先源. 单晶氮化镓纳米压痕与划痕实验[J]. 材料科学与工程学报, 2021, 39(6): 1028-1034. ZHANG X Y. Experimental analysis on indentation and scratch of single crystal GaN[J]. Journal of Materials Science and Engineering, 2021, 39(6): 1028-1034 (in Chinese). [23] YAN J W, TAKAHASHI H, GAI X H, et al. Load effects on the phase transformation of single-crystal silicon during nanoindentation tests[J]. Materials Science and Engineering: A, 2006, 423(1/2): 19-23. [24] 葛梦然, 王全景, 张振中. 单晶硅压痕接触变形的简化计算[J]. 光学 精密工程, 2022, 30(11): 1317-1324. GE M R, WANG Q J, ZHANG Z Z. Simplified calculation of indentation contact deformation of monocrystalline silicon[J]. Optics and Precision Engineering, 2022, 30(11): 1317-1324 (in Chinese). [25] 张国青. 钎焊金刚石线锯切割单晶硅时的材料去除机理研究[J]. 人工晶体学报, 2014, 43(12): 3311-3317. ZHANG G Q. Study on mechanism of brazed diamond wire saw for slicing monocrystalline silicon[J]. Journal of Synthetic Crystals, 2014, 43(12): 3311-3317 (in Chinese). [26] MAHMOUD T A, TAMAKI J, YAN J W. Three-dimensional shape modeling of diamond abrasive grains measured by a scanning laser microscope[J]. Key Engineering Materials, 2003, 238/239: 131-136. |