JOURNAL OF SYNTHETIC CRYSTALS ›› 2021, Vol. 50 ›› Issue (2): 209-243.
• Invited • Next Articles
HUANG Feng, ZHENG Wei, WANG Mengye, HE Jiaqing, CHENG Lu, LI Titao, XU Cunhua, DAI Yejing, LI Yuqiang
Received:
2020-12-28
Published:
2021-03-24
CLC Number:
HUANG Feng, ZHENG Wei, WANG Mengye, HE Jiaqing, CHENG Lu, LI Titao, XU Cunhua, DAI Yejing, LI Yuqiang. Development of Zinc Oxide: Bulk Crystal Growth, Arbitrary Regulation of Carrier Concentration and Practical Applications[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(2): 209-243.
[1] IZYUMSKAYA N, AVRUTIN V, ÖZGÜR Ü, et al. Preparation and properties of ZnO and devices[J]. Physica Status Solidi (b), 2007, 244(5): 1439-1450. [2] ABRAHAMS S C, BERNSTEIN J L. Remeasurement of the structure of hexagonal ZnO[J]. Acta Crystallographica Section B, 1969, 25(7): 1233-1236. [3] WANG G, KIEHNE G T, WONG G K L, et al. Large second harmonic response in ZnO thin films[J]. Applied Physics Letters, 2002, 80(3): 401-403. [4] HUANG F, LIN Z, LIN W W, et al. Research progress in ZnO single-crystal: growth, scientific understanding, and device applications[J]. Chinese Science Bulletin, 2014, 59(12): 1235-1250. [5] OKA K, SHIBATA H, KASHIWAYA S. Crystal growth of ZnO[J]. Journal of Crystal Growth, 2002, 237/238/239: 509-513. [6] KLEBER W, MLODOCH R. Über Die Synthese von Zinkit-Einkristallen[J]. Kristall Und Technik, 1966, 1(2): 249-259. [7] CHASE A B, OSMER J A. Localized cooling in flux crystal growth[J]. Journal of the American Ceramic Society, 1967, 50(6): 325-328. [8] WANKLYN B M. The growth of ZnO crystals from phosphate and vanadate fluxes[J]. Journal of Crystal Growth, 1970, 7(1): 107-108. [9] NIELSEN J W, DEARBORN E F. The growth of large single crystals of zinc oxide[J]. The Journal of Physical Chemistry, 1960, 64(11): 1762-1763. [10] SHILOH M, GUTMAN J. Growth of ZnO single crystals by chemical vapour transport[J]. Journal of Crystal Growth, 1971, 11(2): 105-109. [11] PIEKARCZYK W, GAZDA S, NIEMYSKI T. The growth of zinc oxide crystals by chemical transport method[J]. Journal of Crystal Growth, 1972, 12(4): 272-276. [12] MATSUMOTO K, KONEMURA K, SHIMAOKA G. Crystal growth of ZnO by vapor transport in a closed tube using Zn and ZnCl2 as transport agents[J]. Journal of Crystal Growth, 1985, 71(1): 99-103. [13] MATSUMOTO K, SHIMAOKA G. Crystal growth of ZnO by chemical transport[J]. Journal of Crystal Growth, 1988, 86(1/2/3/4): 410-414. [14] MATSUMOTO K, NODA K. Crystal growth of ZnO by chemical transport using HgCl2 as a transport agent[J]. Journal of Crystal Growth, 1990, 102(1/2): 137-140. [15] MULLIN J B, MACEWAN W R, HOLLIDAY C H, et al. Pressure balancing: a technique for suppressing dissociation during the melt-growth of compounds[J]. Journal of Crystal Growth, 1972, 13/14: 629-634. [16] REYNOLDS D C, LITTON C W, LOOK D C, et al. High-quality, melt-grown ZnO single crystals[J]. Journal of Applied Physics, 2004, 95(9): 4802-4805. [17] NAUSE J, NEMETH B. Pressurized melt growth of ZnO boules[J]. Semiconductor Science and Technology, 2005, 20(4): S45-S48. [18] HELBIG R. Über Die züchtung von grösseren reinen und dotierten ZnO-kristallen aus der gasphase[J]. Journal of Crystal Growth, 1972, 15(1): 25-31. [19] OHSHIMA E, OGINO H, NIIKURA I, et al. Growth of the 2-in-size bulk ZnO single crystals by the hydrothermal method[J]. Journal of Crystal Growth, 2004, 260(1/2): 166-170. [20] HUTSON A R. Piezoelectricity and conductivity in ZnO and CdS[J]. Physical Review Letters, 1960, 4(10): 505. [21] KO H J, CHEN Y F, HONG S K, et al. Ga-doped ZnO films grown on GaN templates by plasma-assisted molecular-beam epitaxy[J]. Applied Physics Letters, 2000, 77(23): 3761-3763. [22] REYNOLDS D C, COLLINS T C. Excited terminal states of a bound exciton-donor complex in ZnO[J]. Physical Review, 1969, 185(3): 1099. [23] GUTOWSKI, PRESSER, BROSER. Acceptor-exciton complexes in ZnO: a comprehensive analysis of their electronic states by high-resolution magnetooptics and excitation spectroscopy[J]. Physical Review B, Condensed Matter, 1988, 38(14): 9746-9758. [24] BLATTNER G, KLINGSHIRN C, HELBIG R, et al. The influence of a magnetic field on the ground and excited states of bound exciton complexes in ZnO[J]. Physica Status Solidi (b), 1981, 107(1): 105-115. [25] BAGNALL D M, CHEN Y F, ZHU Z, et al. Optically pumped lasing of ZnO at room temperature[J]. Applied Physics Letters, 1997, 70(17): 2230-2232. [26] OHTA H, KAWAMURA K I, ORITA M, et al. Current injection emission from a transparent p-n junction composed of p-SrCu2O2/n-ZnO[J]. Applied Physics Letters, 2000, 77(4): 475-477.[LinkOut] [27] TSUKAZAKI A, OHTOMO A, ONUMA T, et al. Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO[J]. Nature Materials, 2005, 4(1): 42-46. [28] TSUKAZAKI A, OHTOMO A, KAWASAKI M. Blue-light-emitting diodes based on ZnO[J]. Oyo Buturi, 2005, 74(10): 1359-64. [29] RAIMONDI D L, KAY E. High resistivity transparent ZnO thin films[J]. Journal of Vacuum Science and Technology, 1970, 7(1): 96-99. [30] WANG Z L, SONG J H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays[J]. Science, 2006, 312(5771): 242-246. [31] PARK C H, ZHANG S B, WEI S H. Origin ofp-type doping difficulty in ZnO: the impurity perspective[J]. Physical Review B, 2002, 66(7): 073202. [32] LOOK D C, CLAFLIN B. P-type doping and devices based on ZnO[J]. Physica Status Solidi (b), 2004, 241(3): 624-630. [33] LU J G, ZHANG Y Z, YE Z Z, et al. Low-resistivity, stable p-type ZnO thin films realized using a Li-N dual-acceptor doping method[J]. Applied Physics Letters, 2006, 88(22): 222114. [34] YUAN G D, ZHANG W J, JIE J S, et al. P-type ZnO nanowire arrays[J]. Nano Letters, 2008, 8(8): 2591-2597. [35] PAN Z W, DAI Z R, WANG Z L. Nanobelts of semiconducting oxides[J]. Science, 2001, 291(5510): 1947-1949. [36] KONG X Y, DING Y, YANG R S, et al. Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts[J]. Science, 2004, 303(5662): 1348-1351. [37] HUGHES W L, WANG Z L. Controlled synthesis and manipulation of ZnO nanorings and nanobows[J]. Applied Physics Letters, 2005, 86(4): 043106. [38] LIM Y S, PARK J W, HONG S T, et al. Carbothermal synthesis of ZnO nanocomb structure[J]. Materials Science and Engineering: B, 2006, 129(1/2/3): 100-103. [39] GAO P X, DING Y, MAI W J, et al. Conversion of zinc oxide nanobelts into superlattice-structured nanohelices[J]. Science, 2005, 309(5741): 1700-1704. [40] GAO P X, WANG Z L. High-yield synthesis of single-crystal nanosprings of ZnO[J]. Small, 2005, 1(10): 945-949. [41] WANG Z L. Splendid one-dimensional nanostructures of zinc oxide: a new nanomaterial family for nanotechnology[J]. ACS Nano, 2008, 2(10): 1987-1992. [42] GAO P X, WANG Z L. Self-assembled nanowire-nanoribbon junction arrays of ZnO[J]. The Journal of Physical Chemistry B, 2002, 106(49): 12653-12658. [43] HE J H, HO C H, WANG C W, et al. Growth of crossed ZnO nanorod networks induced by polar substrate surface[J]. Crystal Growth & Design, 2009, 9(1): 17-19. [44] WANG X D, DING Y, LI Z, et al. Single-crystal mesoporous ZnO thin films composed of nanowalls[J]. The Journal of Physical Chemistry C, 2009, 113(5): 1791-1794. [45] WANG X, SONG J, LIU J, et al. Direct-current nanogenerator driven by ultrasonic waves[J]. Science, 2007, 316(5821): 102-105. [46] WANG X D, LIU J, SONG J H, et al. Integrated nanogenerators in biofluid[J]. Nano Letters, 2007, 7(8): 2475-2479. [47] WANG X D, GAO Y F, WEI Y G, et al. Output of an ultrasonic wave-driven nanogenerator in a confined tube[J]. Nano Research, 2009, 2(3): 177-182. [48] QIN Y, WANG X D, WANG Z L. Microfibre-nanowire hybrid structure for energy scavenging[J]. Nature, 2008, 451(7180): 809-813. [49] YANG R, QIN Y, DAI L, et al. Power generation with laterally packaged piezoelectric fine wires[J]. Nature Nanotechnology, 2009, 4(1): 34-39. [50] NAKAMURA S, SENOH M, IWASA N, et al. Superbright green InGaN single-quantum-well-structure light-emitting diodes[J]. Japanese Journal of Applied Physics, 1995, 34(Part 2, No. 10B): L1332-L1335. [51] YU P, TANG Z K, WONG G K, et al. Room temperature stimulated emission from ZnO quantum dot films[J]. Proc 23rd Inter Conf on the Physics of Semiconductor. World Scientific, Singapore, 1996, 2: 1453-1456. [52] TANG Z K, WONG G K L, YU P, et al. Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films[J]. Applied Physics Letters, 1998, 72(25): 3270-3272. [53] SERVICE R F. Will UV lasers beat the blues?[J]. Science, 1997, 276(5314): 895. [54] TANIYASU Y, KASU M, MAKIMOTO T. An aluminium nitride light-emitting diode with a wavelength of 210 nanometres[J]. Nature, 2006, 441(7091): 325-328. [55] GIBART P. Metal organic vapour phase epitaxy of GaN and lateral overgrowth[J]. Reports on Progress in Physics, 2004, 67(5): 667-715. [56] CHOI J H, ZOULKARNEEV A, KIM S I, et al. Nearly single-crystalline GaN light-emitting diodes on amorphous glass substrates[J]. Nature Photonics, 2011, 5(12): 763-769. [57] SHEN D Z, MEI Z X, LIANG H L, et al. ZnO-based matierial, heterojunction and photoelectronic device[J]. Chinese Journal of Luminescence, 2014, 35(1): 0001b. [58] HOPFIELD J J, THOMAS D G. On some observable properties of longitudinal excitons[J]. Journal of Physics and Chemistry of Solids, 1960, 12(3/4): 276-284. [59] REYNOLDS D C, LITTON C W, COLLINS T C. Zeeman effects in the edge emission and absorption of ZnO[J]. Physical Review, 1965, 140(5A): a1726. [60] TOMZIG E, HELBIG R. Band-edge emission in ZnO[J]. Journal of Luminescence, 1976, 14(3): 403-415. [61] DAMEN T C, PORTO S P S, TELL B. Raman effect in zinc oxide[J]. Physical Review, 1966, 142(2): 570. [62] ARGUELLO C A, ROUSSEAU D L, PORTO S P S. First-order Raman effect in wurtzite-type crystals[J]. Physical Review, 1969, 181(3): 1351. [63] ASHKENOV N, MBENKUM B N, BUNDESMANN C, et al. Infrared dielectric functions and phonon modes of high-quality ZnO films[J]. Journal of Applied Physics, 2003, 93(1): 126-133. [64] LAVROV E V. Infrared absorption spectroscopy of hydrogen-related defects in ZnO[J]. Physica B: Condensed Matter, 2003, 340/341/342: 195-200. [65] LAVROV E V, WEBER J, BÖRRNERT F, et al. Hydrogen-related defects in ZnO studied by infrared absorption spectroscopy[J]. Physical Review B, 2002, 66(16): 165205. [66] MCCLUSKEY M D, JOKELA S J, ZHURAVLEV K K, et al. Infrared spectroscopy of hydrogen in ZnO[J]. Applied Physics Letters, 2002, 81(20): 3807-3809. [67] ÖZGÜR, ALIVOV Y I, LIU C, et al. A comprehensive review of ZnO materials and devices[J]. Journal of Applied Physics, 2005, 98(4): 041301. [68] CUSCÓ R, ALARCÓN-LLADÓ E, IBÁÑEZ J, et al. Temperature dependence of Raman scattering in ZnO[J]. Physical Review B, 2007, 75(16): 165202. [69] LI T T, WANG M Y, LIU X L, et al. Hydrogen impurities in ZnO: shallow donors in ZnO semiconductors and active sites for hydrogenation of carbon species[J]. The Journal of Physical Chemistry Letters, 2020, 11(7): 2402-2407. [70] LIN W W, CHEN D G, ZHANG J Y, et al. Hydrothermal growth of ZnO single crystals with high carrier mobility[J]. Crystal Growth & Design, 2009, 9(10): 4378-4383. [71] LAUDISE R A, BALLMAN A A. Hydrothermal synthesis of zinc oxide and zinc sulfide[J]. The Journal of Physical Chemistry, 1960, 64(5): 688-691. [72] LAUDISE R A, KOLB E D, CAPORASO A J. Hydrothermal growth of large sound crystals of zinc oxide[J]. Journal of the American Ceramic Society, 1964, 47(1): 9-12. [73] SEKIGUCHI T, MIYASHITA S, OBARA K, et al. Hydrothermal growth of ZnO single crystals and their optical characterization[J]. Journal of Crystal Growth, 2000, 214/215: 72-76. [74] DILEO L, ROMANO D, SCHAEFFER L, et al. Effect of complexing agent on hydrothermal growth of ZnO crystals[J]. Journal of Crystal Growth, 2004, 271(1/2): 65-73. [75] DEMIANETS L N, KOSTOMAROV D V, KUZ’MINA I P, et al. Mechanism of growth of ZnO single crystals from hydrothermal alkali solutions[J]. Crystallography Reports, 2002, 47(1): S86-S98. [76] EHRENTRAUT D, SATO H, KAGAMITANI Y, et al. Solvothermal growth of ZnO[J]. Progress in Crystal Growth and Characterization of Materials, 2006, 52(4): 280-335. [77] DEM’YANETS L N, LYUTIN V I. Status of hydrothermal growth of bulk ZnO: latest issues and advantages[J]. Journal of Crystal Growth, 2008, 310(5): 993-999. [78] ZHANG C L, ZHOU W N, HANG Y, et al. Hydrothermal growth and characterization of ZnO crystals[J]. Journal of Crystal Growth, 2008, 310(7/8/9): 1819-1822. [79] NTEP J M, SAID HASSANI S, LUSSON A, et al. ZnO growth by chemical vapour transport[J]. Journal of Crystal Growth, 1999, 207(1/2): 30-34. [80] CHENG L, ZHU S, ZHENG W, et al. Ultra-wide spectral range (0.4-8 μm) transparent conductive ZnO bulk single crystals: a leading runner for mid-infrared optoelectronics[J]. Materials Today Physics, 2020, 14: 100244. [81] LIN W W, DING K, LIN Z, et al. The growth and investigation on Ga-doped ZnO single crystals with high thermal stability and high carrier mobility[J]. Cryst Eng Comm, 2011, 13(10): 3338-3341. [82] ZHENG W, LIN R C, ZHANG D, et al. Vacuum-ultraviolet photovoltaic detector with improved response speed and responsivity via heating annihilation trap state mechanism[J]. Advanced Optical Materials, 2018, 6(21): 1800697. [83] HUANG F, ZHU S, WANG F, et al. Can we transform any insulators into semiconductors? theory, strategy, and example in ZnO[J]. Matter, 2020, 2(5): 1091-1105. [84] JIN M G, LI Z B, HUANG F, et al. Critical conditions for the formation of p-type ZnO with Li doping[J]. RSC Advances, 2018, 8(54): 30868-30874. [85] HIRAMATSU H, OHTA H, SUZUKI T, et al. Mechanism for heteroepitaxial growth of transparent P-type semiconductor: LaCuOS by reactive solid-phase epitaxy[J]. Crystal Growth & Design, 2004, 4(2): 301-307. [86] Look D C, Leedy K D, Tomich D H, et al. Mobility analysis of highly conducting thin films:application to ZnO[J]. Applied Physics Letters, 2010, 96(6): 062102. [87] MASUDA Y, KONDO M, KOUMOTO K. Site-selective deposition of In2O3 using a self-assembled monolayer[J]. Crystal Growth & Design, 2009, 9(1): 555-561. [88] MINAMI T. Transparent conducting oxide semiconductors for transparent electrodes[J]. Semiconductor Science and Technology, 2005, 20(4): S35-S44. [89] IGASAKI Y, SAITO H. Substrate temperature dependence of electrical properties of ZnO∶Al epitaxial films on sapphire (12-10)[J]. Journal of Applied Physics, 1991, 69(4): 2190-2195. [90] PEI Z L, SUN C, TAN M H, et al. Optical and electrical properties of direct-current magnetron sputtered ZnO∶Al films[J]. Journal of Applied Physics, 2001, 90(7): 3432-3436. [91] CHAMBERS S A. Epitaxial growth and properties of doped transition metal and complex oxide films[J]. Advanced Materials, 2010, 22(2): 219-248. [92] KIM H, GILMORE C M, HORWITZ J S, et al. Transparent conducting aluminum-doped zinc oxide thin films for organic light-emitting devices[J]. Applied Physics Letters, 2000, 76(3): 259-261. [93] LU J G, YE Z Z, ZENG Y J, et al. Structural, optical, and electrical properties of (Zn, Al)O films over a wide range of compositions[J]. Journal of Applied Physics, 2006, 100(7): 073714. [94] LIU H F, CHUA S J, HU G X, et al. Effects of substrate on the structure and orientation of ZnO thin film grown by rf-magnetron sputtering[J]. Journal of Applied Physics, 2007, 102(8): 083529. [95] ZHAN Z B, ZHANG J Y, ZHENG Q H, et al. Strategy for preparing Al-doped ZnO thin film with high mobility and high stability[J]. Crystal Growth & Design, 2011, 11(1): 21-25. [96] JI X, CHEN L, XU M X, et al. Crystal imperfection modulation engineering for functionalization of wide band gap semiconductor radiation detector[J]. Advanced Electronic Materials, 2018, 4(2): 1700307. [97] LI T T, ZHU Y M, JI X, et al. Experimental evidence on stability of N substitution for O in ZnO lattice[J]. The Journal of Physical Chemistry Letters, 2020, 11(20): 8901-8907. [98] GRÜNEBOOM A, KLING L, CHRISTIANSEN S, et al. Next-generation imaging of the skeletal system and its blood supply[J]. Nature Reviews Rheumatology, 2019, 15(9): 533-549. [99] HACHADORIAN R L, BRUZA P, JERMYN M, et al. Imaging radiation dose in breast radiotherapy by X-ray CT calibration of Cherenkov light[J]. Nature Communications, 2020, 11(1): 2298. [100] BLASSE G. Scintillator materials[J]. Chemistry of Materials, 1994, 6(9): 1465-1475. [101] RODNYI P A, DORENBOS P, VAN EIJK C W E. Energy loss in inorganic scintillators[J]. Physica Status Solidi (b), 1995, 187(1): 15-29. [102] XU L J, LIN X S, HE Q Q, et al. Highly efficient eco-friendly X-ray scintillators based on an organic manganese halide[J]. Nature Communications, 2020, 11: 4329. [103] CHO S, KIM S, KIM J, et al. Hybridisation of perovskite nanocrystals with organic molecules for highly efficient liquid scintillators[J]. Light: Science & Applications, 2020, 9: 156. [104] THIRIMANNE H M, JAYAWARDENA K D G I, PARNELL A J, et al. High sensitivity organic inorganic hybrid X-ray detectors with direct transduction and broadband response[J]. Nature Communications, 2018, 9(1): 2926. [105] ZHAO J J, ZHAO L, DENG Y H, et al. Perovskite-filled membranes for flexible and large-area direct-conversion X-ray detector arrays[J]. Nature Photonics, 2020, 14(10): 612-617. [106] ARNFIELD M R, GABALLA H E, ZWICKER R D, et al. Radiation-induced light in optical fibers and plastic scintillators: application to brachytherapy dosimetry[J]. IEEE Transactions on Nuclear Science, 1996, 43(3): 2077-2084. [107] LAVAL M, MOSZYN'SKI M, ALLEMAND R, et al. Barium fluoride—inorganic scintillator for subnanosecond timing[J]. Nuclear Instruments and Methods in Physics Research, 1983, 206(1/2): 169-176. [108] VAN LOEF E V D, DORENBOS P, VAN EIJK C W E, et al. High-energy-resolution scintillator: Ce3+ activated LaCl3[J]. Applied Physics Letters, 2000, 77(10): 1467-1468. [109] MOSZYNSKI M, KAPUSTA M, WOLSKI D, et al. Energy resolution of scintillation detectors readout with large area avalanche photodiodes and photomultipliers[J]. IEEE Transactions on Nuclear Science, 1998, 45(3): 472-477. [110] SAKAI E J. Recent measurements on scintillator-photodetector systems[J]. IEEE Transactions on Nuclear Science, 1987, 34(1): 418-422. [111] LEHMANN W. Edge emission of n-type conducting ZnO and CdS[J]. Solid-State Electronics, 1966, 9(11/12): 1107-1110. [112] SOWIAK M M, ROSS D A. Exposure characteristics of thin window cathode ray tubes on electrofax papers[J]. Applied Optics, 1969, 8(Suppl 1): 88-90. [113] LUCKEY D. A fast inorganic scintillator[J]. Nuclear Instruments and Methods, 1968, 62(1): 119-120. [114] BATSCH T, BENGTSON B, MOSZY$\acute{И}$SKI M. Timing properties of a ZnO(Ga) scintillator (NE843)[J]. Nuclear Instruments and Methods, 1975, 125(3): 443-446. [115] XU M X, CHEN L, LIU B, et al. Effects of photonic crystal structures on the imaging properties of a ZnO∶Ga image converter[J]. Optics Letters, 2018, 43(22): 5647-5650. [116] LIN Y C, CHEN T Y, WANG L C, et al. Comparison of AZO, GZO, and AGZO thin films TCOs applied for a-Si solar cells[J]. Journal of the Electrochemical Society, 2012, 159(6): H599-H604. [117] RUSKE F, PFLUG A, SITTINGER V, et al. Optical modeling of free electron behavior in highly doped ZnO films[J]. Thin Solid Films, 2009, 518(4): 1289-1293. [118] STEINHAUSER J, FA S, OLIVEIRA N, et al. Transition between grain boundary and intragrain scattering transport mechanisms in boron-doped zinc oxide thin films[J]. Applied Physics Letters, 2007, 90(14): 142107. [119] CALDWELL J D, LINDSAY L, GIANNINI V, et al. Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons[J]. Nanophotonics, 2015, 4(1): 44-68. [120] BARKER A S. Transverse and longitudinal optic mode study in MgF2 and ZnF2[J]. Physical Review, 1964, 136(5A): a1290. [121] FAN H Y, SPITZER W, COLLINS R J. Infrared absorption in n-type germanium[J]. Physical Review, 1956, 101(2): 566. [122] YANG X C. Electrical and optical properties of zinc oxide for scintillator applications[D]. West Virginia: West Virginia University, 2008. DOI:10.33915/etd.2729. [123] WALUKIEWICZ W, LAGOWSKI L, JASTRZEBSKI L, et al. Electron mobility and free-carrier absorption in GaAs: determination of the compensation ratio[J]. Journal of Applied Physics, 1979, 50(2): 899-908. [124] BAER W S. Free-carrier absorption in reduced SrTiO3[J]. Physical Review, 1966, 144(2): 734. |
[1] | ZHAO Xudong, CUI Ruirui, DENG Chaoyong. First-Principles Study on Properties of S-La Co-Doped ZnO [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(2): 266-272. |
[2] | LIN Xiaoxia, LI Hui, FU Degang. Preparation of Reduced Graphene Oxide/TiO2 Nanowires Composite Film and Its Adsorption Performance for Cu2+ [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(2): 318-324. |
[3] | WANG Jianchao, YANG Guanghui, TANG Gege, MA Mingyou, PENG Huayong. Controllable Preparation and UV Detection Performance of ZnO Nanorod Arrays Modified by Conducting Polyaniline Film [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(1): 88-93. |
[4] | XIA Donglin, GUO Jinhua. Preparation and Properties of CuInS2 Quantum Dot-Sensitized ZnO Based Photoanode [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2020, 49(12): 2274-2281. |
[5] | LUO Wei, DU Rui. Simulation Study of ZnO(n)/ZnSe(i)/c-Si(p) Heterojunction Solar Cells [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2020, 49(12): 2282-2286. |
[6] | ZHANG Mingyuan, ZHANG Yanbin, NIU Yutong, GUO Guibao. Photocatalytic Properties of TmFeO3 Adsorbed on Carbon Prepared by Hydrothermal Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2020, 49(12): 2297-2301. |
[7] | DU Jingjing, ZHAO Junwei, CHENG Xiaomin, SHI Fei. Kinetic of Photocatalytic Degradation of Gaseous Benzene by One-Dimensional TiO2 Nanotubes [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2020, 49(12): 2308-2312. |
[8] | MENG Zihui, ZHENG Guoyuan, WANG Jilin, XI Yu, LONG Fei. Preparation and Photocatalytic Performance of WS2/MgAl-LDH Composite [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2020, 49(12): 2322-2330. |
[9] | YANG Tian-qi;LI Cui-ping;CAO Fei-fei. Effect of Substrate Temperature on the Properties of Ta-doped ZnO Thin Films Deposited by Radio Frequency Magnetron Sputtering Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2017, 46(9): 1714-1719. |
[10] | WU Ke-yue;CAI Sheng-wen. Effect of PVA on the Structure and Optical Properties of ZnO Nanorods [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2017, 46(9): 1838-1841. |
[11] | QIU Man-de;HAN Qing-jiao;CUI Yan-long;LI Xu. Preparation, Microstructure and Adsorption Properties of Co-MgAl Ternary Hydrotalcite-like Compounds [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2017, 46(8): 1527-1533. |
[12] | SU Shuai;XU Qing;FAN Dong-mei;ZHAI Chun-yang. Preparation of Mesoporous Carbon-loaded Ce-TiO2 and Its Photocatalytic Degradation of Methylene Blue [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2017, 46(8): 1580-1586. |
[13] | LI Ye-hua;WU Xian-wen;CHEN Shang;DAI Chun-hui;YU Xiao-lin;WANG Su-liang;LIANG Qi-ying;ZHAO Shen-yong. Hydrothermal Preparation, Characterization and Its Lithium Storage Performance of MoO3 [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2017, 46(8): 1619-1624. |
[14] | ZHOU Hai;KANG Min;WU Dong;LYU Bao-liang. Controllable Synthesis and Characterization of Spindle-Like CuO Micro-structure [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2017, 46(8): 1625-1630. |
[15] | JIAO Zhi-wei;WANG Hai-jun;ZHU Guang-wei;SUN Tong-qing;CUI Yan;LIU Feng-bin;QU Min. Synthesis, Structure Characterization and Optical Property of Nonlinear Optical Crystal δ-LiZnPO4 [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2017, 46(7): 1197-1202. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||