[1] 徐建卫,周永宗,周国清,等.温梯法大尺寸白宝石单晶的生长[J].人工晶体学报,1998,27(3):242-245. XU J W, ZHOU Y Z, ZHOU G Q, et al. Growth of large-sized sapphire crystals by temperature gradient technique(TGT)[J]. Journal of Synthetic Crystals, 1998, 27(3): 242-245(in Chinese). [2] BARISH B C, BILLINGSLEY G, CAMP J, et al. Development of large size sapphire crystals for laser interferometer gravitational-wave observatory[J]. IEEE Transactions on Nuclear Science, 2002, 49(3): 1233-1237. [3] 周国清,李红军,乔景文,等.LIGO计划用大尺寸蓝宝石晶体光学均匀性和弱吸收获得进展[J].光学学报,2001,21(3):383-384. ZHOU G Q, LI H J, QIAO J W, et al. Progress of optical homogeneity and weak-absorption of large -sized sapphire crystal used in LIGO project[J]. Acta Optica Sinica, 2001, 21(3): 383-384(in Chinese). [4] 李 真,陈振强,陈宝东.泡生法高质量蓝宝石晶体的研究[J].人工晶体学报,2008,37(4):877-880. LI Z, CHEN Z Q, CHEN B D. Study on high quality sapphire crystals by Kyropulos method[J]. Journal of Synthetic Crystals, 2008, 37(4): 877-880(in Chinese). [5] NARUKAWA Y, NARITA J, SAKAMOTO T, et al. Recent progress of high efficiency white LEDs[J]. Physica Status Solidi (a), 2007, 204(6): 2087-2093. [6] WUU D S, WU H W, CHEN S T, et al. Defect reduction of laterally regrown GaN on GaN/patterned sapphire substrates[J]. Journal of Crystal Growth, 2009, 311(10): 3063-3066. [7] KAPPERS M J, MORAM M A, SRIDHARA RAO D V, et al. Low dislocation density GaN growth on high-temperature AlN buffer layers on (0001) sapphire[J]. Journal of Crystal Growth, 2010, 312(3): 363-367. [8] CHEN L C, TSAI W F. Properties of GaN-based light-emitting diodes on patterned sapphire substrate coated with silver nanoparticles prepared by mask-free chemical etching[J]. Nanoscale Research Letters, 2013, 8(1): 1-6. [9] SHIEH C Y, LI Z Y, KUO H C, et al. Structural and optical characterizations of GaN-based green light-emitting diodes growth using TiN buffer layer[C]//SPIE OPTO. Proc SPIE 8625, Gallium Nitride Materials and Devices VIII, San Francisco, California, USA. 2013, 8625: 862529. [10] 陈伟超,唐慧丽,罗 平,等.GaN基发光二极管衬底材料的研究进展[J].物理学报,2014,63(6):288-300. CHEN W C, TANG H L, LUO P, et al. Research progress of substrate materials used for GaN-based light emitting diodes[J]. Acta Physica Sinica, 2014, 63(6): 288-300(in Chinese). [11] HARRIS D C. A peek into the history of sapphire crystal growth[C]//Aero Sense 2003. Proc SPIE 5078, Window and Dome Technologies VIII, Orlando, Florida, USA. 2003, 5078: 1-11. [12] ANTONOV P I, KURLOV V N. New advances and developments in the Stepanov method for the growth of shaped crystals[J]. Crystallography Reports, 2002, 47(1): S43-S52. [13] BUNOIU O M, DUFFAR T, NICOARA I. Gas bubbles in shaped sapphire[J]. Progress in Crystal Growth and Characterization of Materials, 2010, 56(3/4): 123-145. [14] IVANTSOV V. Strength and fatigue of sapphire and silicon crystals grown by the Stepanov method[J]. Rossijskaya Akademiya Nauk, Izvestiya, Seriya Fizicheskaya, 1994,58:63-67. [15] BUNOIU O M, NICOARA I, SANTAILLER J L, et al. On the void distribution and size in shaped sapphire crystals[J]. Crystal Research and Technology, 2005, 40(9): 852-859. [16] NICOARA I, VIZMAN D, FRIEDRICH J. On void engulfment in shaped sapphire crystals using 3D modelling[J]. Journal of Crystal Growth, 2000, 218(1): 74-80. [17] NICOARA I, BUNOIU O M, VIZMAN D. Voids engulfment in shaped sapphire crystals[J]. Journal of Crystal Growth, 2006, 287(2): 291-295. [18] EVANS B D. A review of the optical properties of anion lattice vacancies, and electrical conduction in α-Al2O3: their relation to radiation-induced electrical degradation[J]. Journal of Nuclear Materials, 1995, 219: 202-223. [19] ZHOU G Q, DONG Y J, XU J, et al. φ140 mm sapphire crystal growth by temperature gradient techniques and its color centers[J]. Materials Letters, 2006, 60(7): 901-904. [20] BORODIN V A, IONOV A M, YALOVETS T N. Void formation upon annealing of shaped sapphire crystals[J]. Journal of Crystal Growth, 1990, 104(1): 157-164. [21] KABIR A, MEFTAH A, STOQUERT J P, et al. Defects creation in sapphire by swift heavy ions: a fluence depending process[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions With Materials and Atoms, 2009, 267(6): 957-959. |