[1] YANAGISAWA H, HAFNER C, DONÁ P, et al. Laser-induced field emission from a tungsten tip: optical control of emission sites and the emission process[J]. Physical Review B, 2010, 81(11): 115429. [2] SANKARAN K J, AFSAL M, LOU S C, et al. Electron field emission enhancement of vertically aligned ultrananocrystalline diamond-coated ZnO core-shell heterostructured nanorods[J]. Small, 2014, 10(1): 179-185. [3] CHEN S L, SHANG M H, GAO F M, et al. Extremely stable current emission of P-doped SiC flexible field emitters[J]. Advanced Science, 2016, 3(1): 1500256. [4] CHEN J, CUI L, SUN D, et al. Enhanced field emission properties from aligned graphenes fabricated on micro-hole patterned stainless steel[J]. Applied Physics Letters, 2014, 105(21): 213111. [5] CHEN J, YANG B, LIU X, et al. Field electron emission from pencil-drawn cold cathodes[J]. Applied Physics Letters, 2016, 108(19): 193112. [6] SRIDHAR S, TIWARY C, VINOD S, et al. Field emission with ultralow turn on voltage from metal decorated carbon nanotubes[J]. ACS Nano, 2014, 8(8): 7763-7770. [7] LAHIRI I, WONG J, ZHOU Z L, et al. Ultra-high current density carbon nanotube field emitter structure on three-dimensional micro-channeled copper[J]. Applied Physics Letters, 2012, 101(6): 063110. [8] GAUTIER L A, LE BORGNE V, EL KHAKANI M A. Field emission properties of graphenated multi-wall carbon nanotubes grown by plasma enhanced chemical vapour deposition[J]. Carbon, 2016, 98: 259-266. [9] CHEN Z, DEN ENGELSEN D, BACHMANN P K, et al. High emission current density microwave-plasma-grown carbon nanotube arrays by postdepositional radio-frequency oxygen plasma treatment[J]. Applied Physics Letters, 2005, 87(24): 243104. [10] PARK S A, SONG E H, KANG B H, et al. Carbon nanotube field emitters on KOVAR substrate modified by random pattern[J]. Journal of Nanoparticle Research, 2015, 17(7): 318. [11] KIM J W, JEONG J W, KANG J T, et al. Great improvement in adhesion and uniformity of carbon nanotube field emitters through reactive nanometer-scale SiC fillers[J]. Carbon, 2015, 82: 245-253. [12] EVANS-NGUYEN T, PARKER C B, HAMMOCK C, et al. Carbon nanotube electron ionization source for portable mass spectrometry[J]. Analytical Chemistry, 2011, 83(17): 6527-6531. [13] KRYSZTOF M, GRZEBYK T, SZYSZKA P, et al. Technology and parameters of thin mebrane-anode for MEMS transmission electron microscope[J]. J Vac Sci Technol B, 2018, 36(2):02C107. [14] CHEN J T, YANG B J, LIM Y D, et al. Field emission cathode based on three-dimensional framework carbon and its operation under the driving of a triboelectric nanogenerator[J]. Nano Energy, 2018, 49: 308-315. [15] LASZCZYK K U. Field emission cathodes to form an electron beam prepared from carbon nanotube suspensions[J]. Micromachines, 2020, 11(3): 260. [16] DE JONGE N, LAMY Y, SCHOOTS K, et al. High brightness electron beam from a multi-walled carbon nanotube[J]. Nature, 2002, 420(6914): 393-395. [17] BONARD J M, KIND H, STÖCKLI T, et al. Field emission from carbon nanotubes: the first five years[J]. Solid-State Electronics, 2001, 45(6): 893-914. [18] COLLINS P G, ZETTL A. A simple and robust electron beam source from carbon nanotubes[J]. Applied Physics Letters, 1996, 69(13): 1969-1971. [19] HOUDELLIER F, DE KNOOP L, GATEL C, et al. Development of TEM and SEM high brightness electron guns using cold-field emission from a carbon nanotip[J]. Ultramicroscopy, 2015, 151: 107-115. [20] 曾凡光,一种石墨纤维及其制备方法:中国,201710317637.7[P].2019-09-17. ZENG F G. A kind of graphite fiber and its preparation method: China, 201710317637.7[P]. 2019-09-17(in Chinese). |