[1] 徐嘉慧,康仁科,董志刚,等.硅片化学机械抛光技术的研究进展[J].金刚石与磨料磨具工程,2020,40(4):24-33. XU J H, KANG R K, DONG Z G, et al. Review on chemical mechanical polishing of silicon wafers[J]. Diamond & Abrasives Engineering, 2020, 40(4): 24-33(in Chinese). [2] 康仁科.大尺寸单晶硅片加工技术简介[J].金刚石与磨料磨具工程,2020,40(4):1-4. KANG R K. Brief introduction of processing technology for large size single crystal silicon wafer[J]. Diamond & Abrasives Engineering, 2020, 40(4): 1-4(in Chinese). [3] GOLDSTEIN M, WATANABE M. 450 mm silicon wafers challenges - wafer thickness scaling[J]. ECS Transactions, 2019, 16(6): 3-13. [4] TERHEIDEN B, BALLMANN T, HORBELT R, et al. Manufacturing 100 μm-thick silicon solar cells with efficiencies greater than 20% in a pilot production line[J]. Physica Status Solidi (a), 2015, 212(1): 13-24. [5] WALTERS J, SUNDER K, ANSPACH O, et al. Challenges associated with diamond wire sawing when generating reduced thickness mono-crystalline silicon wafers[C]//2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC). June 5-10, 2016, Portland, OR, USA. IEEE, 2016: 0724-0728. [6] WATANABE M, FUKUDA T, OGURA A, et al. Discussion on issues toward 450 mm wafer[J]. ECS Transactions, 2019, 2(2): 155-165. [7] BURGHARTZ J. Ultra-thin chip technology and applications[M]. New York, NY: Springer New York, 2011. [8] SEKHAR H, FUKUDA T, KIDA Y, et al. The impact of damage etching on fracture strength of diamond wire sawn monocrystalline silicon wafers for photovoltaics use[J]. Japanese Journal of Applied Physics, 2018, 57(12): 126501. [9] SEKHAR H, FUKUDA T, TANAHASHI K, et al. The impact of subsurface damage on the fracture strength of diamond-wire-sawn monocrystalline silicon wafers[J]. Japanese Journal of Applied Physics, 2018, 57(8S3): 08RB08. [10] WANG S F, AN C H, ZHANG F H, et al. An experimental and theoretical investigation on the brittle ductile transition and cutting force anisotropy in cutting KDP crystal[J]. International Journal of Machine Tools and Manufacture, 2016, 106: 98-108. [11] YAN J W, ASAMI T, HARADA H, et al. Crystallographic effect on subsurface damage formation in silicon microcutting[J]. CIRP Annals, 2012, 61(1): 131-134. [12] BUDNITZKI M, KUNA M. Scratching of silicon surfaces[J]. International Journal of Solids and Structures, 2019, 162: 211-216. [13] GE M R, ZHU H T, HUANG C Z, et al. Investigation on critical crack-free cutting depth for single crystal silicon slicing with fixed abrasive wire saw based on the scratching machining experiments[J]. Materials Science in Semiconductor Processing, 2018, 74: 261-266. [14] WÜRZNER S, BUCHWALD R, MÖLLER H J. Surface damage and mechanical strength of silicon wafers[J]. Physica Status Solidi (c), 2015, 12(8): 1119-1122. [15] ZHANG P, ZHAO H W, SHI C L, et al. Influence of double-tip scratch and single-tip scratch on nano-scratching process via molecular dynamics simulation[J]. Applied Surface Science, 2013, 280: 751-756. [16] WU H, MELKOTE S N. Study of ductile-to-brittle transition in single grit diamond scribing of silicon: application to wire sawing of silicon wafers[J]. Journal of Engineering Materials and Technology, 2012, 134(4): 041011. DOI:10.1115/1.4006177. [17] BUDNITZKI M, KUNA M. Experimental and numerical investigations on stress induced phase transitions in silicon[J]. International Journal of Solids and Structures, 2017, 106/107: 294-304. [18] ALREJA C, SUBBIAH S. A study of scratch speed effects on ductile-brittle transition in silicon[J]. Journal of Micro and Nano-Manufacturing, 2019, 7(2): 024505. [19] BIFANO T G, DOW T A, SCATTERGOOD R O. Ductile-regime grinding: a new technology for machining brittle materials[J]. Journal of Engineering for Industry, 1991, 113(2): 184-189. [20] MUKAIYAMA K, OZAKI M, WADA T. Study on ductile-brittle transition of single crystal silicon by a scratching test using a single diamond tool[C]//2017 8th International Conference on Mechanical and Aerospace Engineering (ICMAE). July 22-25, 2017, Prague, Czech Republic. IEEE, 2017: 40-44. [21] WANG P Z, GE P Q, GE M R, et al. Material removal mechanism and crack propagation in single scratch and double scratch tests of single-crystal silicon carbide by abrasives on wire saw[J]. Ceramics International, 2019, 45(1): 384-393. [22] SUZUKI T, NISHINO Y, YAN J W. Mechanisms of material removal and subsurface damage in fixed-abrasive diamond wire slicing of single-crystalline silicon[J]. Precision Engineering, 2017, 50: 32-43. [23] CHUNG C, LE V N. Depth of cut per abrasive in fixed diamond wire sawing[J]. The International Journal of Advanced Manufacturing Technology, 2015, 80(5/6/7/8): 1337-1346. [24] MAHMOUD T A, TAMAKI J, YAN J W. Three-dimensional shape modeling of diamond abrasive grains measured by a scanning laser microscope[J]. Key Engineering Materials, 2003, 238/239: 131-136. [25] AXINTE D, BUTLER-SMITH P, AKGUN C, et al. On the influence of single grit micro-geometry on grinding behavior of ductile and brittle materials[J]. International Journal of Machine Tools and Manufacture, 2013, 74: 12-18. [26] GU X S, WANG H, ZHAO Q L, et al. Effect of cutting tool geometries on the ductile-brittle transition of monocrystalline sapphire[J]. International Journal of Mechanical Sciences, 2018, 148: 565-577. [27] CHUNG C, NHAT L V. Generation of diamond wire sliced wafer surface based on the distribution of diamond grits[J]. International Journal of Precision Engineering and Manufacturing, 2014, 15(5): 789-796. [28] LIU T Y, GE P Q, BI W B, et al. Subsurface crack damage in silicon wafers induced by resin bonded diamond wire sawing[J]. Materials Science in Semiconductor Processing, 2017, 57: 147-156. [29] LI X Y, GAO Y F, GE P Q, et al. The effect of cut depth and distribution for abrasives on wafer surface morphology in diamond wire sawing of PV polycrystalline silicon[J]. Materials Science in Semiconductor Processing, 2019, 91: 316-326. [30] LIN Z S, HUANG H, XU X P. Experimental and simulational investigation of wire bow deflection in single wire saw[J]. The International Journal of Advanced Manufacturing Technology, 2019, 101(1/2/3/4): 687-695. [31] WANG P Z, GE P Q, GAO Y F, et al. Prediction of sawing force for single-crystal silicon carbide with fixed abrasive diamond wire saw[J]. Materials Science in Semiconductor Processing, 2017, 63: 25-32. [32] LIU T Y, GE P Q, GAO Y F, et al. Depth of cut for single abrasive and cutting force in resin bonded diamond wire sawing[J]. The International Journal of Advanced Manufacturing Technology, 2017, 88(5/6/7/8): 1763-1773. [33] CHUNG C, TSAY G D, TSAI M H. Distribution of diamond grains in fixed abrasive wire sawing process[J]. The International Journal of Advanced Manufacturing Technology, 2014, 73(9/10/11/12): 1485-1494. [34] GE M R, ZHU H T, GE P Q, et al. Investigation on residual scratch depth and material removal rate of scratching machining single crystal silicon with Berkovich indenter[J]. Materials Science in Semiconductor Processing, 2019, 100: 98-105. |