[1] XIE J, LU Y C.A retrospective on lithium-ion batteries[J].Nature Communications, 2020, 11(1):1-4. [2] 前瞻产业研究院.预见2021:中国锂电池行业全景图谱[J].电器工业,2021(4):24-28. Prospective industry research institute.Forecast 2021:Panorama of china lithium battery industry[J].China Electrical Equipment Industry[J].China Electrical Equipment Industry, 2021(4):24-28(in Chinese). [3] ZENG X L, LI J H, SINGH N.Recycling of spent lithium-ion battery:a critical review[J].Critical Reviews in Environmental Science and Technology, 2014, 44(10):1129-1165. [4] 中国物资再生协会.关于《新能源汽车动力蓄电池回收利用管理暂行办法》[J].中国资源综合利用,2018,36(3):2-3. China recycling association.About Interim measures for the management of recycling and utilization of power battery for new energy vehicles[J].China Resources Comprehensive Utilization, 2018, 36(3):2-3(in Chinese). [5] 工信部.《新能源汽车产业发展规划(2021—2035年)》(征求意见稿)[J].汽车与配件,2019(23):16. MIIT.New energy vehicle industry development plan (2021—2035)》(draft for comments)[J].Automobile & Parts, 2019(23):16(in Chinese). [6] 张笑笑,王鸯鸯,刘 媛,等.废旧锂离子电池回收处理技术与资源化再生技术进展[J].化工进展,2016,35(12):4026-4032. ZHANG X X, WANG Y Y, LIU Y, et al.Recent progress in disposal and recycling of spent lithium-ion batteries[J].Chemical Industry and Engineering Progress, 2016, 35(12):4026-4032(in Chinese). [7] 杨 兵.中国有色金属矿产对外依存度与资源可供性之辨析[J].矿产勘查,2013,4(1):8-11. YANG B.Analysis and discussion on dependency of overseas market and supply of China non-ferrous metals resources[J].Mineral Exploration, 2013, 4(1):8-11(in Chinese). [8] MESBAH Y I, AHMED N, ALI B A, et al.Recycling of Li-Ni-Mn-Co hydroxide from spent batteries to produce high-performance supercapacitors with exceptional stability[J].Chem Electro Chem, 2020, 7(4):975-982. [9] ARSHAD F, LI L, AMIN K, et al.A comprehensive review of the advancement in recycling the anode and electrolyte from spent lithium ion batteries[J].ACS Sustainable Chemistry & Engineering, 2020, 8(36):13527-13554. [10] KING S, BOXALL N J.Lithium battery recycling in Australia:defining the status and identifying opportunities for the development of a new industry[J].Journal of Cleaner Production, 2019, 215:1279-1287. [11] PEETERS N, BINNEMANS K, RIAÑO S.Solvometallurgical recovery of cobalt from lithium-ion battery cathode materials using deep-eutectic solvents[J].Green Chemistry, 2020, 22(13):4210-4221. [12] NIGL T, SCHWARZ T E, WALCH C, et al.Characterisation and material flow analysis of end-of-life portable batteries and lithium-based batteries in different waste streams in Austria[J].Waste Management & Research, 2020, 38(6):649-659. [13] LV W, WANG Z H, CAO H B, et al.A critical review and analysis on the recycling of spent lithium-ion batteries[J].ACS Sustainable Chemistry & Engineering, 2018, 6(2):1504-1521. [14] YAO L P, ZENG Q, QI T, et al.An environmentally friendly discharge technology to pretreat spent lithium-ion batteries[J].Journal of Cleaner Production, 2020, 245:118820. [15] XIAO J F, GUO J, ZHAN L, et al.A cleaner approach to the discharge process of spent lithium ion batteries in different solutions[J].Journal of Cleaner Production, 2020, 255:120064. [16] WANG Y Y, DIAO W Y, FAN C Y, et al.Benign recycling of spent batteries towards all-solid-state lithium batteries[J].Chemistry-A European Journal, 2019, 25(38):8975-8981. [17] HE L P, SUN S Y, MU Y Y, et al.Recovery of lithium, nickel, cobalt, and manganese from spent lithium-ion batteries using l-tartaric acid as a leachant[J].ACS Sustainable Chemistry & Engineering, 2017, 5(1):714-721. [18] SONG D W, WANG X Q, ZHOU E L, et al.Recovery and heat treatment of the Li(Ni1/3Co1/3Mn1/3)O2 cathode scrap material for lithium ion battery[J].Journal of Power Sources, 2013, 232:348-352. [19] WANG M M, TAN Q Y, LIU L L, et al.Efficient separation of aluminum foil and cathode materials from spent lithium-ion batteries using a low-temperature molten salt[J].ACS Sustainable Chemistry & Engineering, 2019, 7(9):8287-8294. [20] LV W, WANG Z H, ZHENG X H, et al.Selective recovery of lithium from spent lithium-ion batteries by coupling advanced oxidation processes and chemical leaching processes[J].ACS Sustainable Chemistry & Engineering, 2020, 8(13):5165-5174. [21] MESHRAM P, PANDEY B D, MANKHAND T R.Recovery of valuable metals from cathodic active material of spent lithium ion batteries:leaching and kinetic aspects[J].Waste Management, 2015, 45:306-313. [22] 陆修远,张贵清,曹佐英,等.采用硫酸-还原剂浸出工艺从废旧锂离子电池中回收LiNi0.6Mn0.2Co0.2O2[J].稀有金属与硬质合金,2017,45(6):14-23. LU X Y, ZHANG G Q, CAO Z Y, et al.Recovery of LiNi0.6Mn0.2Co0.2O2 from spent lithium ion batteries by leaching with H2SO4 and reductants[J].Rare Metals and Cemented Carbides, 2017, 45(6):14-23(in Chinese). [23] ZHANG Y C, WANG W Q, HU J H, et al.Stepwise recovery of valuable metals from spent lithium ion batteries by controllable reduction and selective leaching and precipitation[J].ACS Sustainable Chemistry & Engineering, 2020, 8(41):15496-15506. [24] FAN E S, YANG J B, HUANG Y X, et al.Leaching mechanisms of recycling valuable metals from spent lithium-ion batteries by a malonic acid-based leaching system[J].ACS Applied Energy Materials, 2020, 3(9):8532-8542. [25] DAS D, MUKHERJEE S, CHAUDHURI M G.Studies on leaching characteristics of electronic waste for metal recovery using inorganic and organic acids and base[J].Waste Management & Research:the Journal for a Sustainable Circular Economy, 2021, 39(2):242-249. [26] WU Z R, SOH T, CHAN J J, et al.Repurposing of fruit peel waste as a green reductant for recycling of spent lithium-ion batteries[J].Environmental Science & Technology, 2020, 54(15):9681-9692. [27] NING P C, MENG Q, DONG P, et al.Recycling of cathode material from spent lithium ion batteries using an ultrasound-assisted DL-malic acid leaching system[J].Waste Management, 2020, 103:52-60. [28] CHEN B, BAO S X, ZHANG Y M, et al.A high-efficiency and sustainable leaching process of vanadium from shale in sulfuric acid systems enhanced by ultrasound[J].Separation and Purification Technology, 2020, 240:116624. [29] YAMAGUCHI M, ICHIKAWA T, MIYAOKA H, et al.Proton-based solid acids for ammonia absorption in ammonia water[J].International Journal of Hydrogen Energy, 2020, 45(41):22189-22194. [30] KU H, JUNG Y, JO M, et al.Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching[J].Journal of Hazardous Materials, 2016, 313:138-146. [31] ZHENG X H, GAO W F, ZHANG X H, et al.Spent lithium-ion battery recycling-reductive ammonia leaching of metals from cathode scrap by sodium sulphite[J].Waste Management, 2017, 60:680-688. [32] WANG H Y, HUANG K, ZHANG Y, et al.Recovery of lithium, nickel, and cobalt from spent lithium-ion battery powders by selective ammonia leaching and an adsorption separation system[J].ACS Sustainable Chemistry & Engineering, 2017, 5(12):11489-11495. [33] MENG K, CAO Y, ZHANG B, et al.Comparison of the ammoniacal leaching behavior of layered LiNixCoyMn1-x-yO2 (x=1/3, 0.5, 0.8) cathode materials[J].ACS Sustainable Chemistry & Engineering, 2019, 7(8):7750-7759. [34] LI B S, WU C B, HU D, et al.Copper extraction from the ammonia leach liquor of spent lithium ion batteries for regenerating LiNi0.5Co0.5O2 by co-precipitation[J].Hydrometallurgy, 2020, 193:105310. [35] 林 艳, 段建国, 张英杰, 等.一种利用废旧三元锂电池制备正极材料前驱体的方法.中国:CN201811045199.4[P].2018-09-07. LIN Y, DUAN J G, ZHANG Y J, et al.A method of preparing a precursor of cathode material from spent ternary lithium battery.China:CN201811045199.4[P].2018-09-07(in chinese). [36] 张颢竞,程洁红,朱 铖,等.用酸浸—生物浸出工艺从废锂离子电池电极材料中回收金属钴铜镍[J].湿法冶金,2019,38(1):22-27. ZHANG H J, CHENG J H, ZHU C, et al.Recovery of copper, cobalt and nickel from spent lithium ion batteries by a combined process of acid leaching and bioleaching[J].Hydrometallurgy of China, 2019, 38(1):22-27(in Chinese). [37] BAHALOO-HOREH N, MOUSAVI S M, BANIASADI M.Use of adapted metal tolerant Aspergillus Niger to enhance bioleaching efficiency of valuable metals from spent lithium-ion mobile phone batteries[J].Journal of Cleaner Production, 2018, 197:1546-1557. [38] ROY J J, MADHAVI S, CAO B.Metal extraction from spent lithium-ion batteries (LIBs) at high pulp density by environmentally friendly bioleaching process[J].Journal of Cleaner Production, 2021, 280:124242. [39] ZHAO Y L, YUAN X Z, JIANG L B, et al.Regeneration and reutilization of cathode materials from spent lithium-ion batteries[J].Chemical Engineering Journal, 2020, 383:123089. [40] YANG Y, SONG S L, JIANG F, et al.Short process for regenerating Mn-rich cathode material with high voltage from mixed-type spent cathode materials via a facile approach[J].Journal of Cleaner Production, 2018, 186:123-130. [41] YANG X, DONG P, HAO T, et al.A combined method of leaching and co-precipitation for recycling spent LiNi0.6Co0.2Mn0.2O2 cathode materials:process optimization and performance aspects[J].JOM, 2020, 72(11):3843-3852. [42] ZYBERT M, RONDUDA H, SZCZESNA A, et al.Different strategies of introduction of lithium ions into nickel-cmanganese-ccobalt carbonate resulting in LiNi0.6Mn0.2Co0.2O2 (NMC622) cathode material for Li-ion batteries[J].Solid State Ionics, 2020, 348:115273. [43] GAO R C, SUN C H, XU L J, et al.Recycling LiNi0.5Co0.2Mn0.3O2 material from spent lithium-ion batteries by oxalate co-precipitation[J].Vacuum, 2020, 173:109181. [44] ZHANG Z H, YU M, YANG B, et al.Regeneration of Al-doped LiNi1/3Co1/3Mn1/3O2 cathode material via a sustainable method from spent Li-ion batteries[J].Materials Research Bulletin, 2020, 126:110855. [45] ZHENG Y, WANG S Q, GAO Y L, et al.Lithium nickel cobalt manganese oxide recovery via spray pyrolysis directly from the leachate of spent cathode scraps[J].ACS Applied Energy Materials, 2019, 2(9):6952-6959. [46] 杨 桃,林 辉,刘 婷.动力锂离子电池镍钴锰酸锂正极材料新型回收再生技术[J].电池工业,2018,22(6):311-314. YANG T, LIN H, LIU T.New recovery and reuse method of power Lithium-ion Batteries with LiNixCoyMnl-x-yO2 cathode material[J].Chinese Battery Industry, 2018, 22(6):311-314(in Chinese). [47] MENG X Q, CAO H B, HAO J, et al.Sustainable preparation of LiNi(1/3)Co(1/3)Mn(1/3)O(2)-V2O5 cathode materials by recycling waste materials of spent lithium-ion battery and vanadium-bearing slag[J].ACS Sustainable Chemistry & Engineering, 2018, 6(5):5797-805. [48] SHI Y, CHEN G, LIU F, et al.Resolving the compositional and structural defects of degraded LiNixCoyMnzO2 particles to directly regenerate high-performance lithium-ion battery cathodes[J].ACS Energy Letters, 2018, 3(7):1683-1692. [49] WANG T, LUO H M, BAI Y C, et al.Direct recycling of spent NCM cathodes through ionothermal lithiation[J].Advanced Energy Materials, 2020, 10(30):2001204. [50] XIE Z G, SONG Q S, XIE H W, et al.Chemically driven synthesis of Ti3+ self-doped Li4Ti5O12 spinel in molten salt[J].Journal of the American Ceramic Society, 2021, 104(2):753-765. [51] 楼 平,徐国华,岳灵平,等.熔盐法再生修复退役三元动力电池正极材料[J].储能科学与技术,2020,9(3):848-855. LOU P, XU G H, YUE L P, et al.Degraded LixNi0.5Co0.2Mn0.3O2(0<x<1)via eutectic solutions for direct regeneration of spent lithium ion battery cathodes[J].Energy Storage Science and Technology, 2020, 9(3):848-855(in Chinese). [52] MA T F, GUO Z X, SHEN Z, et al.Molten salt-assisted regeneration and characterization of submicron-sized LiNi0.5Co0.2Mn0.3O2 crystals from spent lithium ion batteries[J].Journal of Alloys and Compounds, 2020, 848:156591. [53] ZHANG H M, HUANG J Y, HU R H, et al.Echelon utilization of waste power batteries in new energy vehicles:review of Chinese policies[J].Energy, 2020, 206:118178. |