[1] JIANG J K, LI Y, CHANG F R, et al. MBE growth of mid-wavelength infrared photodetectors based on high quality InAs/AlAs/InAsSb superlattice[J]. Journal of Crystal Growth, 2021, 564: 126109. [2] GOLOVYNSKYI S, DATSENKO O I, SERAVALLI L, et al. InAs/InGaAs quantum dots confined by InAlAs barriers for enhanced room temperature light emission: photoelectric properties and deep levels[J]. Microelectronic Engineering, 2021, 238: 111514. [3] ALNAMI N, KUMAR R, KUCHUK A, et al. InAs nanostructures for solar cell: improved efficiency by submonolayer quantum dot[J]. Solar Energy Materials and Solar Cells, 2021, 224: 111026. [4] BARSEGHYAN M G, MANASELYAN A K, LAROZE D, et al. Impurity-modulated Aharonov-Bohm oscillations and intraband optical absorption in quantum dot-ring nanostructures[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 81: 31-36. [5] ZHAO Z Y, MIN Y, HUANG Y Y. Photon-assisted transport through an Aharonov-Bohm ring with a side-coupled double quantum dots[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 114: 113589. [6] LI H D, WANG Y, LIU S H, et al. Spin thermoelectric properties based on a Rashba triple-quantum-dot ring[J]. Journal of Applied Physics, 2018, 124(8): 085103. [7] SU L L, LIANG B L, WANG Y, et al. Abnormal photoluminescence for GaAs/Al0.2Ga0.8As quantum dot-ring hybrid nanostructure grown by droplet epitaxy[J]. Journal of Luminescence, 2018, 195: 187-192. [8] ZHAO X, ZHENG J, YUAN R Y, et al. Fano resonance and power output in a quantum-dot-embedded Aharonov-Bohm ring subjected to THz irradiation[J]. Current Applied Physics, 2019, 19(4): 447-451. [9] YI G Y, WANG X Q, GONG W J, et al. Josephson effect in a triple-quantum-dot ring with one dot coupled to superconductors: numerical renormalization group calculations[J]. Physics Letters A, 2016, 380(14/15): 1385-1391. [10] BARSEGHYAN M G, KIRAKOSYAN A A, LAROZE D. Laser driven intraband optical transitions in two-dimensional quantum dots and quantum rings[J]. Optics Communications, 2017, 383: 571-576. [11] LEON R, PETROFF P M, LEONARD D, et al. Spatially resolved visible luminescence of self-assembled semiconductor quantum dots[J]. Science, 1995, 267(5206): 1966-1968. [12] FAFARD S, LEON R, LEONARD D, et al. Visible photoluminescence from N-dot ensembles and the linewidth of ultrasmallAlyIn1-yAs/AlxGa1-xAs quantum dots[J]. Physical Review B, 1994, 50(11): 8086-8089. [13] GAPONENKO M S, LUTICH A A, TOLSTIK N A, et al. Temperature-dependent photoluminescence of PbS quantum dots in glass: evidence of exciton state splitting and carrier trapping[J]. Physical Review B, 2010, 82(12): 125320. [14] DE MELLO DONEGÁ C, BODE M, MEIJERINK A. Size- and temperature-dependence of exciton lifetimes in CdSe quantum dots[J]. Physical Review B, 2006, 74(8): 085320. [15] SELLAMI N, MELLITI A, SAHLI A, et al. The effect of the excitation and of the temperature on the photoluminescence circular polarization of AlInAs/AlGaAs quantum dots[J]. Applied Surface Science, 2009, 256(5): 1409-1412. [16] YOFFE A D. Semiconductor quantum dots and related systems: electronic, optical, luminescence and related properties of low dimensional systems[J]. Advances in Physics, 2001, 50(1): 1-208. [17] KOGUCHI N, ISHIGE K. Growth of GaAs epitaxial microcrystals on an S-terminated GaAs substrate by successive irradiation of Ga and as molecular beams[J]. Japanese Journal of Applied Physics, 1993, 32(Part 1, No. 5A): 2052-2058. [18] CHIKYOW T, KOGUCHI N. Microcrystal growth of GaAs on a Se-terminated GaAlAs surface for the quantum-well box structure by sequential supplies of Ga and As molecular beams[J]. Applied Physics Letters, 1992, 61(20): 2431-2433. [19] KIM J S, KOGUCHI N. Near room temperature droplet epitaxy for fabrication of InAs quantum dots[J]. Applied Physics Letters, 2004, 85(24): 5893-5895. [20] MANO T, WATANABE K, TSUKAMOTO S, et al. New self-organized growth method for InGaAs quantum dots on GaAs(001) using droplet epitaxy[J]. Japanese Journal of Applied Physics, 1999, 38(Part 2, No. 9A/B): L1009-L1011. [21] MANO T, WATANABE K, TSUKAMOTO S, et al. Nanoscale InGaAs concave disks fabricated by heterogeneous droplet epitaxy[J]. Applied Physics Letters, 2000, 76(24): 3543-3545. [22] KOGUCHI N, TAKAHASHI S, CHIKYOW T. New MBE growth method for InSb quantum well boxes[J]. Journal of Crystal Growth, 1991, 111(1/2/3/4): 688-692. [23] WANG Y, GUO X, WEI J M, et al. Effect of initial crystallization temperature and surface diffusion on formation of GaAs multiple concentric nanoring structures by droplet epitaxy[J]. Chinese Physics B, 2020, 29(4): 046801. [24] CHEN Z B, LEI W, CHEN B, et al. Elemental diffusion during the droplet epitaxy growth of In(Ga)As/GaAs(001) quantum dots by metal-organic chemical vapor deposition[J]. Applied Physics Letters, 2014, 104(2): 022108. [25] MANCA P. A relation between the binding energy and the band-gap energy in semiconductors of diamond or zinc-blende structure[J]. Journal of Physics and Chemistry of Solids, 1961, 20(3/4): 268-273. [26] ZOCHER M, HEYN C, HANSEN W. Droplet etching with indium-intermixing and lattice mismatch[J]. Journal of Crystal Growth, 2019, 512: 219-222. [27] HEYN C, SCHNÜLL S, HANSEN W. Scaling of the structural characteristics of nanoholes created by local droplet etching[J]. Journal of Applied Physics, 2014, 115(2): 024309. |