[1] KNOWLES K E, KILBURN T B, ALZATE D G, et al. Bright CuInS2/CdS nanocrystal phosphors for high-gain full-spectrum luminescent solar concentrators[J]. Chemical Communications, 2015, 51(44): 9129-9132. [2] ZHAO H G, BENETTI D, TONG X, et al. Efficient and stable tandem luminescent solar concentrators based on carbon dots and perovskite quantum dots[J]. Nano Energy, 2018, 50: 756-765. [3] MA W W, LI W J, CAO M Y, et al. Large Stokes-shift AIE fluorescent materials for high-performance luminescent solar concentrators[J]. Organic Electronics, 2019, 73: 226-230. [4] DEBIJE M G, VERBUNT P P C. Thirty years of luminescent solar concentrator research: solar energy for the built environment[J]. Advanced Energy Materials, 2012, 2(1): 12-35. [5] REISFELD R. New developments in luminescence for solar energy utilization[J]. Optical Materials, 2010, 32(9): 850-856. [6] GONG X, JIANG H, CAO M Y, et al. Eu-doped ZnO quantum dots with solid-state fluorescence and dual emission for high-performance luminescent solar concentrators[J]. Materials Chemistry Frontiers, 2021, 5(12): 4746-4755. [7] SHAMSI J, URBAN A S, IMRAN M, et al. Metal halide perovskite nanocrystals: synthesis, post-synthesis modifications, and their optical properties[J]. Chemical Reviews, 2019, 119(5): 3296-3348. [8] HA S T, SU R, XING J, et al. Metal halide perovskite nanomaterials: synthesis and applications[J]. Chemical Science, 2017, 8(4): 2522-2536. [9] ZHANG X L, CAO W Y, WANG W G, et al. Efficient light-emitting diodes based on green perovskite nanocrystals with mixed-metal cations[J]. Nano Energy, 2016, 30: 511-516. [10] YIN J, AHMED G H, BAKR O M, et al. Unlocking the effect of trivalent metal doping in all-inorganic CsPbBr3 perovskite[J]. ACS Energy Letters, 2019, 4(3): 789-795. [11] YANG D X, HUO D X. Cation doping and strain engineering of CsPbBr3-based perovskite light emitting diodes[J]. Journal of Materials Chemistry C, 2020, 8(20): 6640-6653. [12] YAO J S, GE J, HAN B N, et al. Ce3+-doping to modulate photoluminescence kinetics for efficient CsPbBr3 nanocrystals based light-emitting diodes[J]. Journal of the American Chemical Society, 2018, 140(10): 3626-3634. [13] JI Y Q, WANG M Q, YANG Z, et al. Highly stable Na∶CsPb(Br, I)3@Al2O3 nanocomposites prepared by a pre-protection strategy[J]. Nanoscale, 2020, 12(11): 6403-6410. [14] BERA S, GHOSH D, DUTTA A, et al. Limiting heterovalent B-site doping in CsPbI3 nanocrystals: phase and optical stability[J]. ACS Energy Letters, 2019, 4(6): 1364-1369. [15] COULTER J B, BIRNIE III D P. Assessing tauc plot slope quantification: ZnO thin films as a model system[J]. Physica Status Solidi (b), 2018, 255(3): 1700393. [16] KIM H, BAE S R, LEE T H, et al. Enhanced optical properties and stability of CsPbBr3 nanocrystals through nickel doping[J]. Advanced Functional Materials, 2021, 31(28): 2102770. [17] MOCATTA D, COHEN G, SCHATTNER J, et al. Heavily doped semiconductor nanocrystal quantum dots[J]. Science, 2011, 332(6025): 77-81. [18] DING N, XU W, ZHOU D L, et al. Extremely efficient quantum-cutting Cr3+, Ce3+, Yb3+ tridoped perovskite quantum dots for highly enhancing the ultraviolet response of Silicon photodetectors with external quantum efficiency exceeding 70%[J]. Nano Energy, 2020, 78: 105278. [19] YAO J S, GE J, WANG K H, et al. Few-nanometer-sized alpha-CsPbI3 quantum dots enabled by strontium substitution and iodide passivation for efficient red-light emitting diodes[J]. Journal of the American Chemical Society, 2019, 141(5): 2069-2079. [20] CHEN Y M, LIU Y S, HONG M C. Cation-doping matters in caesium lead halide perovskite nanocrystals: from physicochemical fundamentals to optoelectronic applications[J]. Nanoscale, 2020, 12(23): 12228-12248. |