[1] TASSOPOULOS C N, BARNETT D, RUSSELL FRASER T. Breath-acetone and blood-sugar measurements in diabetes[J]. The Lancet, 1969, 293(7609): 1282-1286. [2] MAKISIMOVICH N, VOROTYNTSEV V, NIKITINA N, et al. Adsorption semiconductor sensor for diabetic ketoacidosis diagnosis[J]. Sensors and Actuators B: Chemical, 1996, 36(1/2/3): 419-421. [3] PHILLIPS M. Method for the collection and assay of volatile organic compounds in breath[J]. Analytical Biochemistry, 1997, 247(2): 272-278. [4] TURNER C, WALTON C, HOASHI S, et al. Breath acetone concentration decreases with blood glucose concentration in type Ⅰ diabetes mellitus patients during hypoglycaemic clamps[J]. Journal of Breath Research, 2009, 3(4): 046004. [5] LORD H, YU Y F, SEGAL A, et al. Breath analysis and monitoring by membrane extraction with sorbent interface[J]. Analytical Chemistry, 2002, 74(21): 5650-5657. [6] SCHWARZ K, PIZZINI A, ARENDACKÁ B, et al. Breath acetone: aspects of normal physiology related to age and gender as determined in a PTR-MS study[J]. Journal of Breath Research, 2009, 3(2): 027003. [7] ERANNA G, JOSHI B C, RUNTHALA D P, et al. Oxide materials for development of integrated gas sensors: a comprehensive review[J]. Critical Reviews in Solid State and Materials Sciences, 2004, 29(3/4): 111-188. [8] SINGH G, VIRPAL, SINGH R C. Highly sensitive gas sensor based on Er-doped SnO2 nanostructures and its temperature dependent selectivity towards hydrogen and ethanol[J]. Sensors and Actuators B: Chemical, 2019, 282: 373-383. [9] LI G J, CHENG Z X, XIANG Q, et al. Bimetal PdAu decorated SnO2 nanosheets based gas sensor with temperature-dependent dual selectivity for detecting formaldehyde and acetone[J]. Sensors and Actuators B: Chemical, 2019, 283: 590-601. [10] HODGKINSON J, TATAM R P. Optical gas sensing: a review[J]. Measurement Science and Technology, 2013, 24(1): 012004. [11] DINH T V, CHOI I Y, SON Y S, et al. A review on non-dispersive infrared gas sensors: improvement of sensor detection limit and interference correction[J]. Sensors and Actuators B: Chemical, 2016, 231: 529-538. [12] DONG M, ZHENG C T, MIAO S Z, et al. Development and measurements of a mid-infrared multi-gas sensor system for CO, CO2 and CH4 detection[J]. Sensors, 2017, 17(10): 2221. [13] GAO C S, ZHANG Y Y, YANG H R, et al. A DFT study of In doped Tl2O: a superior NO2 gas sensor with selective adsorption and distinct optical response[J]. Applied Surface Science, 2019, 494: 162-169. [14] SINGH N, UMAR A, SINGH N, et al. Highly sensitive optical ammonia gas sensor based on Sn Doped V2O5 Nanoparticles[J]. Materials Research Bulletin, 2018, 108: 266-274. [15] VIJAYAKUMAR S, VADIVEL S. Fiber optic ethanol gas sensor based WO3 and WO3/gC3N4 nanocomposites by a novel microwave technique[J]. Optics & Laser Technology, 2019, 118: 44-51. [16] WU M R, LI W Z, TUNG C Y, et al. NO gas sensor based on ZnGa2O4 epilayer grown by metalorganic chemical vapor deposition[J]. Scientific Reports, 2019, 9: 7459. [17] BOZHEYEV F, AKINOGLU E M, WU L H, et al. Effect of Mo-doping in SnO2 thin film photoanodes for water oxidation[J]. International Journal of Hydrogen Energy, 2020, 45(58): 33448-33456. [18] LIU J Q, ZHANG H P, LI Y L, et al. Enhanced Vis-NIR light absorption and thickness effect of Mo-modified SnO2 thin films: a first principle calculation study[J]. Results in Physics, 2021, 23: 103997. [19] KOU X Y, MENG F Q, CHEN K, et al. High-performance acetone gas sensor based on Ru-doped SnO2 nanofibers[J]. Sensors and Actuators B: Chemical, 2020, 320: 128292. [20] KOU X Y, XIE N, CHEN F, et al. Superior acetone gas sensor based on electrospun SnO2 nanofibers by Rh doping[J]. Sensors and Actuators B: Chemical, 2018, 256: 861-869. [21] LIU D, PAN J L, TANG J H, et al. Ag decorated SnO2 nanoparticles to enhance formaldehyde sensing properties[J]. Journal of Physics and Chemistry of Solids, 2019, 124: 36-43. [22] MANASSIDIS I, GONIAKOWSKI J, KANTOROVICH L N, et al. The structure of the stoichiometric and reduced SnO2(110) surface[J]. Surface Science, 1995, 339(3): 258-271. [23] KÜFNER S, SCHLEIFE A, HÖFFLING B, et al. Energetics and approximate quasiparticle electronic structure of low-index surfaces of SnO2[J]. Physical Review B, 2012, 86(7): 075320. [24] TRANI F, CAUSÀ M, NINNO D, et al. Density functional study of oxygen vacancies at theSnO2 surface and subsurface sites[J]. Physical Review B, 2008, 77(24): 245410. [25] PFROMMER B G, CÔTÉ M, LOUIE S G, et al. Relaxation of crystals with the quasi-Newton method[J]. Journal of Computational Physics, 1997, 131(1): 233-240. [26] CHAUDHARY V A, MULLA I S, VIJAYAMOHANAN K, et al. Hydrocarbon sensing mechanism of surface ruthenated tin oxide: an in situ IR, ESR, and adsorption kinetics study[J]. The Journal of Physical Chemistry B, 2001, 105(13): 2565-2571. [27] CIRIACO F, CASSIDEI L, CACCIATORE M, et al. First principle study of processes modifying the conductivity of substoichiometric SnO2 based materials upon adsorption of CO from atmosphere[J]. Chemical Physics, 2004, 303(1/2): 55-61. [28] 沈学础. 半导体光谱和光学性质[M]. 2版. 北京:科学出版社, 1992. SHEN X C. Semiconductor spectrum and optical properties[M]. 2nd ed. Beijing: Science Press, 1992. |