[1] WEBER M J. Scintillation: mechanisms and new crystals[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 527(1/2): 9-14. [2] 徐兰兰,孙丛婷,薛冬峰.稀土闪烁晶体研究进展[J].中国科学:技术科学,2016,46(7):657-673. XU L L, SUN C T, XUE D F. Recent advances in rare earth scintillation crystals[J]. Scientia Sinica (Technologica), 2016, 46(7): 657-673(in Chinese). [3] BOURRET-COURCHESNE E D, BIZARRI G A, BORADE R, et al. Crystal growth and characterization of alkali-earth halide scintillators[J]. Journal of Crystal Growth, 2012, 352(1): 78-83. [4] HIGGINS W M, CHURILOV A, LOEF E V, et al. Crystal growth of large diameter LaBr3:Ce and CeBr3[J]. Journal of Crystal Growth, 2008, 310: 2085-2089. [5] VAN LOEF E V D, DORENBOS P, VAN EIJK C W E. The scintillation mechanism in LaCl3:Ce3[J]. Journal of Physics: Condensed Matter, 2003, 15(8): 1367-1375. [6] 李 嫚,耿巨峰,王昊宇,等.Eu2+掺杂KCaCl3晶体的生长及发光性能[J].无机化学学报,2021,37(3):443-447. LI M, GENG J F, WANG H Y, et al. Growth and luminescence properties of Eu2+ doped KCaCl3 crystal[J]. Chinese Journal of Inorganic Chemistry, 2021, 37(3): 443-447(in Chinese). [7] LINDSEY A C, ZHURAVLEVA M, STAND L, et al. Crystal growth and characterization of europium doped KCaI3, a high light yield scintillator[J]. Optical Materials, 2015, 48: 1-6. [8] LOYD M, LINDSEY A, WU Y T, et al. Growth of large size (≥38 mm diameter) KCaI3:Eu scintillator crystals[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 914: 8-14. [9] ZHURAVLEVA M, BLALOCK B, YANG K, et al. New single crystal scintillators: CsCaCl3:Eu and CsCaI3:Eu[J]. Journal of Crystal Growth, 2012, 352(1): 115-119. [10] YANG K, ZHURAVLEVA M, MELCHER C L. Crystal growth and characterization of CsSr1-xEuxI3 high light yield scintillators[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2011, 5(1): 43-45. [11] CHERGINETS V L, REBROVA N V, GRIPPA A Y, et al. Scintillation properties of CsSrX3:Eu2+ (CsSr1-yEuyX3, X=Cl, Br; 0≤y≤0.05) single crystals grown by the Bridgman method[J]. Materials Chemistry and Physics, 2014, 143(3): 1296-1299. [12] REBROVA N V, GRIPPA A Y, PUSHAK A S, et al. Crystal growth and characterization of Eu2+ doped RbCaX3 (X=Cl, Br) scintillators[J]. Journal of Crystal Growth, 2017, 466: 39-44. [13] SHWETHA G, KANCHANA V, VAITHEESWARAN G. CsMgCl3: a promising cross luminescence material[J]. Journal of Solid State Chemistry, 2015, 227: 110-116. [14] KOBAYASHI M, OMATA K, SUGIMOTO S, et al. Scinillation characteristics of CsPbCl3 single crystals[J]. Nuclear Instruments and Methods in Physics Research A, 2008, 592: 369-373. [15] FUJIMOTO Y, SAEKI K, YANAGIDA T, et al. Luminescence and scintillation properties of TlCdCl3 crystal[J]. Radiation Measurements, 2017, 106: 151-154. [16] HAWRAMI R, ARIESANTI E, WEI H, et al. Intrinsic scintillators: TlMgCl3 and TlCaI3[J]. Journal of Crystal Growth, 2017, 475: 216-219. [17] KHAN A, ROOH G, KIM H J, et al. Intrinsically activated TlCaCl3: a new halide scintillator for radiation detection[J]. Radiation Measurements, 2017, 107: 115-118. [18] SHIMAMURA K, VÍLLORA E G, NAKAKITA S, et al. Growth and scintillation characteristics of CeF3, PrF3 and NdF3 single crystals[J]. Journal of Crystal Growth, 2004, 264(1/2/3): 208-215. |