[1] WANG C L, DONG H L, JIANG L, et al. Organic semiconductor crystals[J]. Chemical Society Reviews, 2018, 47(2): 422-500. [2] CHEN Z, DUAN S M, ZHANG X T, et al. Organic semiconductor crystal engineering for high-resolution layer-controlled 2D crystal arrays[J]. Advanced Materials, 2021: 2104166. [3] ZHANG Y, DONG H, TANG Q, et al. Organic single-crystalline p-n junction nanoribbons[J]. Journal of the American Chemical Society, 2010, 132(33): 11580-11584. [4] QIU Y C, ZHAO Y Y, GAO H F, et al. Scalable single-crystalline organic 1D arrays for image sensor[J]. Small, 2021, 17(21): 2100332. [5] ZHU L N, WANG Z, LU J, et al. Influence of SAM quality on the organic semiconductor thin film gas sensors[J]. Chemical Research in Chinese Universities, 2021: 1-6. [6] ZHANG X J, DENG W, JIA R F, et al. Precise patterning of organic semiconductor crystals for integrated device applications[J]. Small, 2019, 15(27): 1900332. [7] ZHANG X J, JIE J S, DENG W, et al. Alignment and patterning of ordered small-molecule organic semiconductor micro-/nanocrystals for device applications[J]. Advanced Materials, 2016, 28(13): 2475-2503. [8] BRISENO A L, MANNSFELD S C B, LING M M, et al. Patterning organic single-crystal transistor arrays[J]. Nature, 2006, 444(7121): 913-917. [9] QIAN J, JIANG S, LI S L, et al. Solution-processed 2D molecular crystals: fabrication techniques, transistor applications, and physics[J]. Advanced Materials Technologies, 2019, 4(5): 1800182. [10] YE X, LIU Y, HAN Q X, et al. Microspacing in-air sublimation growth of organic crystals[J]. Chemistry of Materials, 2018, 30(2): 412-420. [11] GUO Q, YE X, LIN Q, et al. Microspacing in-air sublimation growth of ultrathin organic single crystals[J]. Chem Mater, 2020: DOI: 10.1021/acs.chemmater.9b05215. [12] 叶 欣,刘 阳,陶绪堂.“微距升华”晶体生长方法[J].人工晶体学报,2021,50(1):1-6. YE X, LIU Y, TAO X T. A crystal growth method: microspacing in-air sublimation[J]. Journal of Synthetic Crystals, 2021, 50(1): 1-6(in Chinese). [13] PRADEEP V V, MITETELO N, ANNADHASAN M, et al. Ambient pressure sublimation technique provides polymorph-selective perylene nonlinear optical microcavities[J]. Advanced Optical Materials, 2020, 8(1): 1901317. [14] CAO Q J, LU C R, WANG Q, et al. Micro-spacing in-air sublimation of submillimeter-scaled rubrene nanoribbons and nanosheets for efficient optical waveguides[J]. Organic Electronics, 2020, 87: 105983. [15] SHEN S, XIA G M, JIANG Z J, et al. Temperature controlling polymorphism and polymorphic interconversion in sublimation crystallization of 5-methoxy-salicylaldhyde azine[J]. Crystal Growth & Design, 2019, 19(1): 320-327. [16] MOH A M, KHOO P L, SASAKI K, et al. Growth and characteristics of C8-BTBT layer on C-sapphire substrate by thermal evaporation[J]. Physica Status Solidi (a), 2018, 215(11): 1700862. [17] DICKEY K C, ANTHONY J E, LOO Y L. Improving organic thin-film transistor performance through solvent-vapor annealing of solution-processable triethylsilylethynyl anthradithiophene[J]. Advanced Materials, 2006, 18(13): 1721-1726. [18] LIU C, KHIM D Y, NOH Y Y. Organic field-effect transistors by a solvent vapor annealing process[J]. Journal of Nanoscience and Nanotechnology, 2014, 14(2): 1476-1493. [19] WANG H, FONTEIN F, LI J, et al. Lithographical fabrication of organic single-crystal arrays by area-selective growth and solvent vapor annealing[J]. ACS Applied Materials & Interfaces, 2020, 12(43): 48854-48860. [20] YU S G, JO Y R, KIM M W, et al. Growth kinetics of single crystalline C8-BTBT rods via solvent vapor annealing[J]. The Journal of Physical Chemistry C, 2020, 124(27): 14873-14880. [21] WANG H, FONTEIN F, WANG Y D, et al. In situ observation of organic single micro-crystal fabrication by solvent vapor annealing[J]. Journal of Materials Chemistry C, 2021, 9(29): 9124-9129. [22] LYU L, NIU D M, XIE H P, et al. The correlations of the electronic structure and film growth of 2, 7-diocty[1]benzothieno[3, 2-b]benzothiophene (C8-BTBT) on SiO2[J]. Physical Chemistry Chemical Physics, 2017, 19(2): 1669-1676. [23] SOEDA J, HIROSE Y, YAMAGISHI M, et al. Solution-crystallized organic field-effect transistors with charge-acceptor layers: high-mobility and low-threshold-voltage operation in air[J]. Advanced Materials, 2011, 23(29): 3309-3314. |