[1] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. [2] LI L, PANG L H, ZHAO Q Y, et al. Niobium disulfide as a new saturable absorber for an ultrafast fiber laser[J]. Nanoscale, 2020, 12(7): 4537-4543. [3] DONG N N, LI Y X, FENG Y Y, et al. Optical limiting and theoretical modelling of layered transition metal dichalcogenide nanosheets[J]. Scientific Reports, 2015, 5: 14646. [4] YAN P, CHEN H, YIN J, et al. Large-area tungsten disulfide for ultrafast photonics[J]. Nanoscale, 2017, 9(5): 1871-1877. [5] 张家旗,楚学影,李金华,等.溶剂依赖的MoS2量子点光学性质[J].发光学报,2019,40(11):1359-1364. ZHANG J Q, CHU X Y, LI J H, et al. Solvent-dependent optical properties of MoS2 quantum dots[J]. Chinese Journal of Luminescence, 2019, 40(11): 1359-1364(in Chinese). [6] QI X, ZHANG Y, OU Q, et al. Photonics and optoelectronics of 2D metal-halide perovskites[J]. Small (Weinheim an Der Bergstrasse, Germany), 2018: e1800682. [7] ACHARYYA P, KUNDU K, BISWAS K. 2D layered all-inorganic halide perovskites: recent trends in their structure, synthesis and properties[J]. Nanoscale, 2020, 12(41): 21094-21117. [8] LI X, HOFFMAN J M, KANATZIDIS M G. The 2D halide perovskite rulebook: how the spacer influences everything from the structure to optoelectronic device efficiency[J]. Chemical Reviews, 2021, 121(4): 2230-2291. [9] LEE E, YOON Y S, KIM D J. Two-dimensional transition metal dichalcogenides and metal oxide hybrids for gas sensing[J]. ACS Sensors, 2018, 3(10): 2045-2060. [10] JIA Y M, YI X Q, LI Z G, et al. Recent advance in biosensing applications based on two-dimensional transition metal oxide nanomaterials[J]. Talanta, 2020, 219: 121308. [11] CHO C H, CHOE Y S, OH J Y, et al. Self-assembled 2D networks of metal oxide nanomaterials enabling sub-ppm level breathalyzers[J]. ACS Sensors, 2021, 6(9): 3195-3203. [12] 庄文昌,张 洁,李钦堂,等.氧化镓纳米材料的制备及其在光电探测方面的应用研究进展[J].人工晶体学报,2020,49(12):2376-2382. ZHUANG W C, ZHANG J, LI Q T, et al. Research progress on preparation of gallium oxide nanomaterials and its application in photoelectric detection[J]. Journal of Synthetic Crystals, 2020, 49(12): 2376-2382(in Chinese). [13] 陈星辉,唐颖慧,王加强,等.衬底温度对氧化锌薄膜微结构及光学性能的影响[J].人工晶体学报,2021,50(9):1681-1687+1722. CHEN X H, TANG Y H, WANG J Q, et al. Effect of substrate temperature on microstructure and optical properties of ZnO thin films[J]. Journal of Synthetic Crystals, 2021, 50(9): 1681-1687+1722(in Chinese). [14] SMITH J B, HAGAMAN D, JI H F. Growth of 2D black phosphorus film from chemical vapor deposition[J]. Nanotechnology, 2016, 27(21): 215602. [15] LI L K, YU Y J, YE G J, et al. Black phosphorus field-effect transistors[J]. Nature Nanotechnology, 2014, 9(5): 372-377. [16] SCIACCA D, PERIC N, BERTHE M, et al. Account of the diversity of tunneling spectra at the germanene/Al(1 1 1) interface[J]. Journal of Physics: Condensed Matter, 2020, 32(5): 055002. [17] KOVALSKA E, ANTONATOS N, LUXA J, et al. “Top-down” arsenene production by low-potential electrochemical exfoliation[J]. Inorganic Chemistry, 2020, 59(16): 11259-11265. [18] MOHAMED ISMAIL M, VIGNESHWARAN J, ARUNBALAJI S, et al. Antimonene nanosheets with enhanced electrochemical performance for energy storage applications[J]. Dalton Transactions, 2020, 49(39): 13717-13725. [19] FENG T C, LI X H, CHAI T, et al. Bismuthene nanosheets for 1 μm multipulse generation[J]. Langmuir, 2020, 36(1): 3-8. [20] SHEN C, LIU Y, WU J, et al. Tellurene photodetector with high gain and wide bandwidth[J]. ACS Nano, 2020, 14(1): 303-310. [21] ZHANG L, FAHAD S, WU H R, et al. Tunable nonlinear optical responses and carrier dynamics of two-dimensional antimonene nanosheets[J]. Nanoscale Horizons, 2020, 5(10): 1420-1429. [22] ARES P, PALACIOS J J, ABELLÁN G, et al. Recent progress on antimonene: a new bidimensional material[J]. Advanced Materials, 2018, 30(2): 1703771. [23] WANG X, HE J J, ZHOU B Q, et al. Bandgap-tunable preparation of smooth and large two-dimensional antimonene[J]. Angewandte Chemie International Edition, 2018, 57(28): 8668-8673. [24] PUMERA M, SOFER Z. 2D monoelemental arsenene, antimonene, and bismuthene: beyond black phosphorus[J]. Advanced Materials, 2017, 29(21): 1605299. [25] SADICK N S, CARDONA A. Laser treatment for facial acne scars: a review[J]. Journal of Cosmetic and Laser Therapy, 2018, 20(7/8): 424-435. [26] FILICE F P, DING Z F. Analysing single live cells by scanning electrochemical microscopy[J]. The Analyst, 2019, 144(3): 738-752. [27] MASLOV N A. Ultraviolet pulsed laser-induced fluorescence nonlinearity in optically thick organic samples[J]. Journal of Fluorescence, 2018, 28(2): 689-693. [28] CAI Y K, LUO X C, LIU Z Q, et al. Product and process fingerprint for nanosecond pulsed laser ablated superhydrophobic surface[J]. Micromachines, 2019, 10(3): 177. [29] OGILVY H, PIPER J A. Compact, all solid-state, high-repetition-rate 336 nm source based on a frequency quadrupled, Q-switched, diode-pumped Nd∶YVO4 laser[J]. Optics Express, 2005, 13(23): 9465. [30] 付鑫鹏,付喜宏,姚 聪,等.基于超薄层MoS2可饱和吸收体的被动调Q固体Nd∶YAG激光器[J].发光学报,2021,42(5):668-673. FU X P, FU X H, YAO C, et al. Passive Q-switched solid-state Nd∶YAG laser based on ultrathin MoS2 saturable absorber[J]. Chinese Journal of Luminescence, 2021, 42(5): 668-673(in Chinese). [31] SONG Y F, LIANG Z M, JIANG X T, et al. Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability[J]. 2D Materials, 2017, 4(4): 045010. [32] WANG M, ZHANG F, WANG Z, et al. Passively Q-switched Nd3+ solid-state lasers with antimonene as saturable absorber[J]. Optics Express, 2018, 26(4): 4085-4095. [33] PANARIN A Y, KHODASEVICH I A, GLADKOVA O L, et al. Determination of antimony by surface-enhanced Raman spectroscopy[J]. Applied Spectroscopy, 2014, 68(3): 297-306. [34] JAFARI A, KLOBES B, SERGUEEV I, et al. Phonon spectroscopy in antimony and tellurium oxides[J]. The Journal of Physical Chemistry A, 2020, 124(39): 7869-7880. |