JOURNAL OF SYNTHETIC CRYSTALS ›› 2022, Vol. 51 ›› Issue (5): 881-892.
Special Issue: 超硬材料与特殊环境晶体生长技术
• Reviews • Previous Articles Next Articles
YOU Cun, ZHAO Wei, WANG Xin, DONG Shushan, TAO Qiang, ZHU Pinwen
Received:
2022-02-16
Online:
2022-05-15
Published:
2022-06-17
CLC Number:
YOU Cun, ZHAO Wei, WANG Xin, DONG Shushan, TAO Qiang, ZHU Pinwen. Transition Metal Light Elements Compounds Synthesized by High Pressure and High Temperature[J]. Journal of Synthetic Crystals, 2022, 51(5): 881-892.
[1] KANER R B, GILMAN J J, TOLBERT S H. Designing superhard materials[J]. Science, 2005, 308(5726): 1268-1269. [2] CHUNG H Y, WEINBERGER M B, LEVINE J B, et al. Synthesis of ultra-incompressible superhard rhenium diboride at ambient pressure[J]. Science, 2007, 316(5823): 436-439. [3] NAGAKUBO A, OGI H, SUMIYA H, et al. Elastic constants of cubic and wurtzite boron nitrides[J]. Applied Physics Letters, 2013, 102(24): 241909. [4] MA T, LI H, ZHENG X, et al. Ultrastrong boron frameworks in ZrB12: a highway for electron conducting[J]. Advanced Materials, 2017, 29(3): 1604003. [5] MA S L, BAO K, TAO Q, et al. Hardness, magnetic, elastic, and electronic properties of manganese semi-boride synthesized by high pressure and high temperature[J]. Journal of Solid State Chemistry, 2021, 302: 122386. [6] CHEN Y L, YU G T, CHEN W, et al. Highly active, nonprecious electrocatalyst comprising borophene subunits for the hydrogen evolution reaction[J]. Journal of the American Chemical Society, 2017, 139(36): 12370-12373. [7] GAN Q, LIU H T, ZHANG S, et al. Robust hydrophobic materials by surface modification in transition-metal diborides[J]. ACS Applied Materials & Interfaces, 2021, 13(48): 58162-58169. [8] QIN J Q, HE D W, WANG J H, et al. Is rhenium diboride a superhard material?[J]. Advanced Materials, 2008, 20(24): 4780-4783. [9] SHANG Y C, SHEN F R, HOU X Y, et al. Pressure generation above 35 GPa in a walker-type large-volume press[J]. Chinese Physics Letters, 2020, 37(8): 080701. [10] GU Q F, KRAUSS G, STEURER W. Transition metal borides: superhard versus ultra-incompressible[J]. Advanced Materials, 2008, 20(19): 3620-3626. [11] GE Y F, BAO K, MA T, et al. Revealing the unusual boron-pinned layered substructure in superconducting hard molybdenum semiboride[J]. ACS Omega, 2021, 6(33): 21436-21443. [12] TAO Q, CHEN Y L, LIAN M, et al. Modulating hardness in molybdenum monoborides by adjusting an array of boron zigzag chains[J]. Chemistry of Materials, 2019, 31(1): 200-206. [13] TAO Q, ZHAO X P, CHEN Y L, et al. Enhanced Vickers hardness by quasi-3D boron network in MoB2[J]. RSC Advances, 2013, 3(40): 18317. [14] ZHAO X B, LI L, BAO K, et al. Synthesis and characterization of a strong ferromagnetic and high hardness intermetallic compound Fe2B[J]. Physical Chemistry Chemical Physics: PCCP, 2020, 22(46): 27425-27432. [15] HAN L, WANG S M, ZHU J L, et al. Hardness, elastic, and electronic properties of chromium monoboride[J]. Applied Physics Letters, 2015, 106(22): 221902. [16] ZHAO X B, LI L, BAO K, et al. Insight the effect of rigid boron chain substructure on mechanical, magnetic and electrical properties of β-FeB[J]. Journal of Alloys and Compounds, 2022, 896: 162767. [17] GOU H Y, TSIRLIN A A, BYKOVA E, et al. Peierls distortion, magnetism, and high hardness of manganese tetraboride[J]. Physical Review B, 2014, 89(6): 064108. [18] TAO Q, ZHENG D F, ZHAO X P, et al. Exploring hardness and the distorted sp2 hybridization of B-B bonds in WB3[J]. Chemistry of Materials, 2014, 26(18): 5297-5302. [19] LIANG H, PENG F, GUAN S X, et al. Abnormal physical behaviors of hafnium diboride under high pressure[J]. Applied Physics Letters, 2019, 115(23): 231903. [20] CHEN Y, HE D W, QIN J Q, et al. Ultrahigh-pressure densification of nanocrystalline WB ceramics[J]. Journal of Materials Research, 2010, 25(4): 637-640. [21] MA S L, FARLA R, BAO K, et al. An electrically conductive and ferromagnetic nano-structure manganese mono-boride with high Vickers hardness[J]. Nanoscale, 2021, 13(44): 18570-18577. [22] CHEN Y L, YE Y P, TAO Q, et al. Constructing 1D boron chains in the structure of transition metal monoborides for hydrogen evolution reactions[J]. Catalysts, 2021, 11(11): 1265. [23] MA S L, BAO K, TAO Q, et al. Double-zigzag boron chain-enhanced Vickers hardness and manganese bilayers-induced high d-electron mobility in Mn3 B4[J]. Physical Chemistry Chemical Physics: PCCP, 2019, 21(5): 2697-2705. [24] MA S L, BAO K, TAO Q, et al. Investigation the origin and mechanical properties of unusual rigid diamond-like net analogues in manganese tetraboride[J]. International Journal of Refractory Metals and Hard Materials, 2019, 85: 104845. [25] YIN S, HE D W, XU C, et al. Hardness and elastic moduli of high pressure synthesized MoB2 and WB2 compacts[J]. High Pressure Research, 2013, 33(2): 409-417. [26] MA S L, BAO K, TAO Q, et al. Investigating robust honeycomb borophenes sandwiching manganese layers in manganese diboride[J]. Inorganic Chemistry, 2016, 55(21): 11140-11146. [27] MA S L, BAO K, TAO Q, et al. Revealing the unusual rigid boron chain substructure in hard and superconductive tantalum monoboride[J]. Chemistry-A European Journal, 2019, 25(19): 5051-5057. [28] WANG W Q, PENG F, LIANG H, et al. Synthesis and sintering of tungsten tetraboride and tantalum-bearing tungsten tetraboride under ultra high temperature and high pressure[J]. International Journal of Refractory Metals and Hard Materials, 2022, 102: 105701. [29] LIANG H, GUAN S X, LI X, et al. Microstructure evolution, densification behavior and mechanical properties of nano-HfB2 sintered under high pressure[J]. Ceramics International, 2019, 45(6): 7885-7893. [30] ZHANG Z G, LIANG H, CHEN H H, et al. Physical properties of high-temperature sintered TaB2 under high pressure[J]. Ceramics International, 2021, 47(7): 9061-9067. [31] 黎军军,赵学坪,陶 强,等.二硼化钛的高温高压制备及其物性[J].物理学报,2013,62(2):491-497. LI J J, ZHAO X P, TAO Q, et al. Characterization of TiB2 synthesized at high pressure and high temperature[J]. Acta Physica Sinica, 2013, 62(2): 491-497(in Chinese). [32] ZHAO F, TAO Q, YOU C, et al. Enhanced hardness in tungsten-substituted molybdenum diboride solid solutions by local symmetry reduction[J]. Materials Chemistry and Physics, 2020, 251: 123188. [33] WANG P, KUMAR R, SANKARAN E M, et al. Vanadium diboride (VB2) synthesized at high pressure: elastic, mechanical, electronic, and magnetic properties and thermal stability[J]. Inorganic Chemistry, 2018, 57(3): 1096-1105. [34] JUAREZ-ARELLANO E A, WINKLER B, FRIEDRICH A, et al. In situ study of the formation of rhenium borides from the elements at high-(p, T) conditions: extreme incompressibility of Re7B3 and formation of new phases[J]. Solid State Sciences, 2013, 25: 85-92. [35] GOU H Y, DUBROVINSKAIA N, BYKOVA E, et al. Discovery of a superhard iron tetraboride superconductor[J]. Physical Review Letters, 2013, 111(15): 157002. [36] HARTMAN P, PERDOK W G. On the relations between structure and morphology of crystals. I[J]. Acta Crystallographica, 1955, 8(1): 49-52. [37] HARTMAN P, PERDOK W G. On the relations between structure and morphology of crystals. Ⅱ[J]. Acta Crystallographica, 1955, 8(9): 521-524. [38] HARTMAN P, BENNEMA P. The attachment energy as a habit controlling factor: i. Theoretical considerations[J]. Journal of Crystal Growth, 1980, 49(1): 145-156. [39] CHEN Y L, RONG J S, WANG Z Z, et al. Tailoring the d-band center by borophene subunits in chromic diboride toward the hydrogen evolution reaction[J]. Inorganic Chemistry Frontiers, 2021, 8(23): 5130-5138. [40] MA S L, BAO K, TAO Q, et al. An ultra-incompressible ternary transition metal carbide[J]. RSC Adv, 2014, 4(108): 63544-63548. [41] HU Y F, JIA G, MA S L, et al. Hydrogen evolution reaction of γ-Mo0.5W0.5C achieved by high pressure high temperature synthesis[J]. Catalysts, 2016, 6(12): 208. [42] GE Y F, SONG H, BAO K, et al. A novel hard superconductor obtained in di-molybdenum carbide (Mo2C) with Mo-C octahedral structure[J]. Journal of Alloys and Compounds, 2021, 881: 160631. [43] LI H, MA S L, CHEN L X, et al. Carbon-deficient titanium carbide with highly enhanced hardness[J]. Frontiers in Physics, 2020, 8: 364. [44] ZHANG Z G, LIANG H, CHEN H H, et al. Exploring physical properties of tantalum carbide at high pressure and temperature[J]. Inorganic Chemistry, 2020, 59(3): 1848-1852. [45] LIANG H, FANG L M, GUAN S X, et al. Insights into the bond behavior and mechanical properties of hafnium carbide under high pressure and high temperature[J]. Inorganic Chemistry, 2021, 60(2): 515-524. [46] GUAN S X, LIANG H, WANG Q M, et al. Synthesis and phase stability of the high-entropy carbide (Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C under extreme conditions[J]. Inorganic Chemistry, 2021, 60(6): 3807-3813. [47] GE Y F, MA S L, BAO K, et al. Superconductivity with high hardness in Mo3C2[J]. Inorganic Chemistry Frontiers, 2019, 6(5): 1282-1288. [48] ZHAO Z S, CUI L, WANG L M, et al. Bulk Re2C: crystal structure, hardness, and ultra-incompressibility[J]. Crystal Growth & Design, 2010, 10(12): 5024-5026. [49] WANG Z W, KOU Z L, ZHANG Y F, et al. Micrometer-sized titanium carbide with properties comparable to those of nanocrystalline counterparts[J]. Journal of Applied Physics, 2019, 125(16): 165901. [50] WINKLER B, JUAREZ-ARELLANO E A, FRIEDRICH A, et al. Reaction of titanium with carbon in a laser heated diamond anvil cell and reevaluation of a proposed pressure-induced structural phase transition of TiC[J]. Journal of Alloys and Compounds, 2009, 478(1/2): 392-397. [51] SATHISH C I, SHIRAKO Y, TSUJIMOTO Y, et al. Superconductivity of δ-MoC0.75 synthesized at 17 GPa[J]. Solid State Communications, 2014, 177: 33-35. [52] ONO S, KIKEGAWA T, OHISHI Y. A high-pressure and high-temperature synthesis of platinum carbide[J]. Solid State Communications, 2005, 133(1): 55-59. [53] FENG X K, BAO K, TAO Q, et al. Role of TM-TM connection induced by opposite d-electron states on the hardness of transition-metal (TM=Cr, W) mononitrides[J]. Inorganic Chemistry, 2019, 58(22): 15573-15579. [54] WANG S M, GE H, SUN S L, et al. A new molybdenum nitride catalyst with rhombohedral MoS2 structure for hydrogenation applications[J]. Journal of the American Chemical Society, 2015, 137(14): 4815-4822. [55] WANG S M, GE H, HAN W P, et al. Synthesis of onion-like δ-MoN catalyst for selective hydrogenation[J]. The Journal of Physical Chemistry C, 2017, 121(35): 19451-19460. [56] WANG S M, YU X H, LIN Z J, et al. Synthesis, crystal structure, and elastic properties of novel tungsten nitrides[J]. Chemistry of Materials, 2012, 24(15): 3023-3028. [57] FENG X K, BAO K, HUANG Y P, et al. Complete ligand reinforcing the structure of cubic-CrN[J]. Journal of Alloys and Compounds, 2019, 783: 232-236. [58] WANG C C, SONG L L, ZOU Y N. Excellent hardness property of bulk MoN fabricated by a novel method[J]. Results in Physics, 2020, 19: 103362. [59] MA T, YIN Y Y, HONG F, et al. Magnetic, electronic, and mechanical properties of bulk ε-Fe2N synthesized at high pressures[J]. ACS Omega, 2021, 6(19): 12591-12597. [60] ZOU Y, QI X, ZHANG C, et al. Discovery of superconductivity in hard hexagonal ε-NbN[J]. Scientific Reports, 2016, 6: 22330. [61] HASEGAWA M, YAGI T. Synthesis of Co2N by a simple direct nitriding reaction between nitrogen and cobalt under 10 GPa and 1800 K using diamond anvil cell and YAG laser heating[J]. Solid State Communications, 2005, 135(5): 294-297. [62] SALAMAT A, HECTOR A L, GRAY B M, et al. Synthesis of tetragonal and orthorhombic polymorphs of Hf3N4 by high-pressure annealing of a prestructured nanocrystalline precursor[J]. Journal of the American Chemical Society, 2013, 135(25): 9503-9511. [63] FRIEDRICH A, WINKLER B, BAYARJARGAL L, et al. Novel rhenium nitrides[J]. Physical Review Letters, 2010, 105(8): 085504. [64] ZERR A, MIEHE G, RIEDEL R. Synthesis of cubic zirconium and hafnium nitride having Th3P4 structure[J]. Nature Materials, 2003, 2(3): 185-189. [65] GUILLAUME C, MORNIROLI J P, FROST D J, et al. Synthesis of hexagonal Ni3N using high pressures and temperatures[J]. Journal of Physics: Condensed Matter, 2006, 18(37): 8651-8660. [66] FRIEDRICH A, WINKLER B, JUAREZ-ARELLANO E A, et al. Synthesis of binary transition metal nitrides, carbides and borides from the elements in the laser-heated diamond anvil cell and their structure-property relations[J]. Materials, 2011, 4(10): 1648-1692. [67] GREGORYANZ E, SANLOUP C, SOMAYAZULU M, et al. Synthesis and characterization of a binary noble metal nitride[J]. Nature Materials, 2004, 3(5): 294-297. [68] YOUNG A F, SANLOUP C, GREGORYANZ E, et al. Synthesis of novel transition metal nitrides IrN2 and OsN2[J]. Physical Review Letters, 2006, 96(15): 155501. [69] CROWHURST J C, GONCHAROV A F, SADIGH B, et al. Synthesis and characterization of the nitrides of platinum and iridium[J]. Science, 2006, 311(5765): 1275-1278. [70] BINNS J, DONNELLY M E, PEÑA-ALVAREZ M, et al. Direct reaction between copper and nitrogen at high pressures and temperatures[J]. The Journal of Physical Chemistry Letters, 2019, 10(5): 1109-1114. [71] LANIEL D, DEWAELE A, GARBARINO G. High pressure and high temperature synthesis of the iron pernitride FeN2[J]. Inorganic Chemistry, 2018, 57(11): 6245-6251. |
[1] | XU Wanli, GAN Yunhai, LI Yuewen, LI Bin, ZHENG Youdou, ZHANG Rong, XIU Xiangqian. High Rate HVPE Growth of High Uniformity 6-Inch GaN Thick Film [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 11-16. |
[2] | SUN Yuanlong, HU Ziyu, ZHENG Guozong. Growth and Photoelectric Properties Characterization of Large-Sized CH3NH3PbBr3 Crystal [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1313-1318. |
[3] | MA Qisi, LIU Jianggao, SHE Weilin, CAO Cong, ZHANG Lichao, ZHAO Chao, FAN Yexia, ZHOU Zhenqi. Effect of Furnace Air Convection on the Temperature Field of Tellurium Zinc Cadmium Crystal Growth Based on CGSim Simulation [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1344-1351. |
[4] | LING Hao, XU Le, CHEN Sixian, TANG Yuanzhi, SUN Haibin, GUO Xue, FENG Yurun, HU Qiangqiang. Growth and Optical Properties of Large Size CsCu2I3 Single Crystal by Solution Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(7): 1121-1126. |
[5] | XIAO Hongyu, LI Yong, TIAN Changhai, ZHANG Weixi, WANG Qiang, XIAO Zhengguo, WANG Ying, JIN Hui, BAO Zhigang, ZHOU Zhenxiang. Study on the Growth of Type-Ib Diamond Single Crystal and the Temperature Field Distribution in the Synthesis Cavities [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(6): 959-966. |
[6] | AI Jiaxin, WAN Hongping, QIAN Junbing, WEI Hua. Influence of VGF Indium Phosphide Single Crystal Furnace Heater on the Thermal Field Distribution in the Furnace [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(5): 781-791. |
[7] | XING Jiabin, LI Wei, JIA Songyan, MA Yali, LI Xue, ZHENG Qiang. Preparation of Highly Dispersed Nano Calcium Carbonate by Low-Temperature Carbonization Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(5): 864-872. |
[8] | HUANG Changbao, HU Qianqian, ZHU Zhicheng, LI Ya, MAO Changyu, XU Junjie, WU Haixin, NI Youbao. Growth and Device Fabrication of Mid to Far-Infrared Cr2+/Fe2+∶CdSe Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(4): 551-553. |
[9] | QIN Feng, WU Jinjie, DENG Ningqin, JIAO Zhiwei, ZHU Weifeng, TANG Xianqiang, ZHAO Rui. Research Progress for Lead Halide Perovskite Direct Radiation Detector Based on the Solution Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(4): 554-571. |
[10] | CAO Cong, LIU Jianggao, FAN Yexia, LI Zhenxing, ZHOU Zhenqi, MA Qisi, NIU Jiajia. Relationship Between Temperature Gradient and Interfacial Shape Stability of CZT Crystal Growth [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(4): 641-648. |
[11] | WANG Kunyuan, LIANG Xiaoyan, MIN Jiahua, ZHANG Jijun. Effect of In-Situ Heating Treatment on the Quality and Properties of CdZnTe Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(12): 2079-2084. |
[12] | LI Dongmei, ZHOU Jun, WU Feifan, LYU Jiabo, XIAO Li, GONG Hengxiang. Effect of Electrostatic Field on the Preparation of TiO2 Thin Films by Ultrasonic Atomised Pyrolytic Spraying [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(12): 2173-2180. |
[13] | REN Yongchun, LI Jianda, CAO Xiao, HUANG Yi, ZHANG Fan, ZHANG Ning, XUE Yanyan, WANG Qingguo, TANG Huili, XU Xiaodong, DONG Yongjun, XU Jun. Research Progress on High-Melting-Point Rare Earth Oxides Laser Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(11): 1829-1839. |
[14] | GUO Jun, LIU Jian, WANG Zebin, CHEN Peng, SONG Qingsong, MA Jie, WANG Qingguo, XU Xiaodong, XU Jun. Growth, Spectroscopic Properties and Laser Performance of Nd∶ASL Single Crystal Fibers [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(11): 1877-1883. |
[15] | DOU Renqin, HUANG Lei, WANG Xiaofei, GAO Jinyun, LIU Wenpeng, LUO Jianqiao, ZHANG Qingli. Growth and Properties of Nd∶TSAG Crystal [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(11): 1936-1943. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 69
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 115
|
|
|||||||||||||||||||||||||||||||||||||||||||||