JOURNAL OF SYNTHETIC CRYSTALS ›› 2022, Vol. 51 ›› Issue (11): 1973-1982.
• Reviews • Previous Articles Next Articles
ZHANG Jiaxin, PENG Yan, CHENG Xiufang, XIE Xuejian, YANG Xianglong, HU Xiaobo, XU Xiangang
Received:2022-05-18
Online:2022-11-15
Published:2022-12-07
CLC Number:
ZHANG Jiaxin, PENG Yan, CHENG Xiufang, XIE Xuejian, YANG Xianglong, HU Xiaobo, XU Xiangang. Research Progress of Dislocations in SiC Single Crystal[J]. Journal of Synthetic Crystals, 2022, 51(11): 1973-1982.
| [1] MORKOÇ H, STRITE S, GAO G B, et al. Large-band-gap SiC, Ⅲ-V nitride, and Ⅱ-Ⅵ ZnSe-based semiconductor device technologies[J]. Journal of Applied Physics, 1994, 76(3): 1363-1398. [2] 熊礼威,汪建华,满卫东,等.金刚石半导体研究进展[J].材料导报,2010,24(7):117-121. XIONG L W, WANG J H, MAN W D, et al. Progress in diamond semiconductor[J]. Materials Review, 2010, 24(7): 117-121(in Chinese). [3] DUAN P, PENG Y, WANG X W, et al. Preparation of high surface quality HTHP diamond for MPCVD diamond film growth[J]. Journal of Materials Review, 2021, 35(4): 4034-4037+4041. [4] HOMA M, SOBCZAK N, SOBCZAK J J, et al. Interaction between graphene-coated SiC single crystal and liquid copper[J]. Journal of Materials Engineering and Performance, 2018, 27(5): 2317-2329. [5] CHAVOSHI S Z, LUO X C. Atomic-scale characterization of occurring phenomena during hot nanometric cutting of single crystal 3C-SiC[J]. RSC Advances, 2016, 6(75): 71409-71424. [6] WEI W S, MO Y D, YU S H, et al. Influence of SiC hetero-polytype barriers on the performance of IMPATT terahertz diodes[J]. Superlattices and Microstructures, 2021, 152: 106844. [7] YANG H, ZHAO H S, WANG T W, et al. Preparation and antioxidant mechanism of TiSi2-Si-SiC/SiC bilayer coating on matrix graphite[J]. Journal of Alloys and Compounds, 2021, 858: 157721. [8] CHEN S L, ZHAO L F, WANG L, et al. Single-crystal N-doped SiC nanochannel array photoanode for efficient photoelectrochemical water splitting[J]. Journal of Materials Chemistry C, 2019, 7(11): 3173-3180. [9] YU J Y, YU Y, BAI Z Q, et al. Morphological and microstructural analysis of triangular defects in 4H-SiC homoepitaxial layers[J]. CrystEngComm, 2022, 24(8): 1582-1589. [10] YANG J W, SONG H P, JIAN J K, et al. Characterization of morphological defects related to micropipes in 4H-SiC thick homoepitaxial layers[J]. Journal of Crystal Growth, 2021, 568/569: 126182. [11] PARTHIBAN K, LAKSHMANAN P, GNANAVELBABU A. Experimental and theoretical yield strength of silicon carbide and hexagonal boron nitride reinforced Mg-Zn nanocomposites produced by the combined effects of ultrasonication and squeeze casting[J]. Silicon, 2022, 14(14): 8993-9007. [12] SUMATHI R R. Review—status and challenges in hetero-epitaxial growth approach for large diameter AlN single crystalline substrates[J]. ECS Journal of Solid State Science and Technology, 2021, 10(3): 035001. [13] KIM J G, YOO W S, PARK J Y, et al. Quantitative analysis of contact angle of water on SiC: polytype and polarity dependence[J]. ECS Journal of Solid State Science and Technology, 2020, 9(12): 123006. [14] HUANG Y H, WANG M C, LI J M, et al. Removal behavior of micropipe in 4H-SiC during micromachining[J]. Journal of Manufacturing Processes, 2021, 68: 888-897. [15] MCGUIRE S, BLASI R, WU P, et al. Automated mapping of micropipes in SiC wafers using polarized-light microscope[J]. Materials Science Forum, 2018, 924: 527-530. [16] LIU C J, PENG T H, WANG B, et al. Progress in single crystal growth of wide bandgap semiconductor SiC[J]. Materials Science Forum, 2019, 954: 35-45. [17] ARORA A, PATEL A, YADAV B S, et al. Study on evolution of micropipes from hexagonal voids in 4H-SiC crystals by cathodoluminescence imaging[J]. Microscopy and Microanalysis: the Official Journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada, 2021, 27(1): 215-226. [18] 崔潆心,胡小波,徐现刚.物理气相传输法生长碳化硅单晶原生表面形貌研究[J].无机材料学报,2018,33(8):877-882. CUI Y X, HU X B, XU X G. As-grown surface morphologies of SiC single crystals grown by PVT method[J]. Journal of Inorganic Materials, 2018, 33(8): 877-882(in Chinese). [19] KLEPPINGER J W, CHAUDHURI S K, KARADAVUT O, et al. Defect characterization and charge transport measurements in high-resolution Ni/n-4H-SiC Schottky barrier radiation detectors fabricated on 250 μm epitaxial layers[J]. Journal of Applied Physics, 2021, 129(24): 244501. [20] AILIHUMAER T, PENG H Y, RAGHOTHAMACHAR B, et al. Relationship between basal plane dislocation distribution and local basal plane bending in PVT-grown 4H-SiC crystals[J]. Journal of Electronic Materials, 2020, 49(6): 3455-3464. [21] ZHAO L Y, YAN H, CHEN R S, et al. Quasi-in-situ observations of low-angle grain boundaries, twins and texture evolution during continuous annealing in a cold-rolled Mg-Zn-Gd alloy[J]. Materials Characterization, 2020, 170: 110697. [22] KOBAYASHI S, YANG W T, TOMOBE Y, et al. Low-angle boundary engineering for improving high-cycle fatigue property of 430 ferritic stainless steel[J]. Journal of Materials Science, 2020, 55(22): 9273-9285. [23] ABBASI A, FARUQUE A, ROY S, et al. Gate driver design in a 1 μm SiC CMOS process for heterogeneous integration inside SiC power module[J]. International Symposium on Microelectronics, 2020(1): 281-285. [24] SUDARSHAN T S, MAXIMENKO S I. Bulk growth of single crystal silicon carbide[J]. Microelectronic Engineering, 2006, 83(1): 155-159. [25] CHEN P C, MIAO W C, AHMED T, et al. Defect inspection techniques in SiC[J]. Nanoscale Research Letters, 2022, 17(1): 30. [26] 尹朋涛,于金英,杨祥龙,等.晶格畸变检测仪研究碳化硅晶片中位错缺陷分布[J].人工晶体学报,2021,50(4):752-756. YIN P T, YU J Y, YANG X L, et al. Dislocation distribution in SiC wafers studied by lattice distortion detector[J]. Journal of Synthetic Crystals, 2021, 50(4): 752-756(in Chinese). [27] WANG R Y, HUANG X L, LI J C. Optimized junction temperature fluctuation suppression technique for SiC MOSFETs in a wireless charging system[J]. Journal of Power Electronics, 2022, 22(5): 859-869. [28] ZHOU X T, JIA Y P, HU D Q, et al. A simulation-based comparison between Si and SiC MOSFETs on single-event burnout susceptibility[J]. IEEE Transactions on Electron Devices, 2019, 66(6): 2551-2556. [29] CHEN X Y, JIANG S, CHEN Y, et al. Steady-state over-current safe operation area (SOA) of the SiC MOSFET at cryogenic and room temperatures[J]. Cryogenics, 2022, 122: 103424. [30] SAMESHIMA J, SUGAHARA T, ISHINA T, et al. 3D imaging of backside metallization of SiC-SBD influenced by annealing[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(11): 10848-10856. [31] LU W H, WAN C P, ZHANG X Z, et al. The influence to uniform current distribution of SiC MOSFET modules based on the 3rd quadrant characteristics[J]. IOP Conference Series: Earth and Environmental Science, 2021, 772(1): 012032. [32] WANG D W, HU R B, CHEN G, et al. Heavy ion radiation and temperature effects on SiC Schottky barrier diode[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2021, 491: 52-58. [33] MAXIMENKO S I, PIROUZ P, SUDARSHAN T S. Investigation of the electrical activity of partial dislocations in SiC p-i-n diodes[J]. Applied Physics Letters, 2005, 87(3): 033503. [34] GALECKAS A, LINNROS J, PIROUZ P. Recombination-induced stacking faults: evidence for a general mechanism in hexagonal SiC[J]. Physical Review Letters, 2006, 96(2): 025502. [35] HEYDEMANN V D, SCHULZE N, BARRETT D L, et al. Growth of 6H and 4H silicon carbide single crystals by the modified Lely process utilizing a dual-seed crystal method[J]. Applied Physics Letters, 1996, 69(24): 3728-3730. [36] JAYATIRTHA H N, SPENCER M G, TAYLOR C, et al. Improvement in the growth rate of cubic silicon carbide bulk single crystals grown by the sublimation method[J]. Journal of Crystal Growth, 1997, 174(1/2/3/4): 662-668. [37] AVROV D D, BULATOV A V, DOROZHKIN S I, et al. Defect formation in silicon carbide large-scale ingots grown by sublimation technique[J]. Journal of Crystal Growth, 2005, 275(1/2): e485-e489. [38] 张红岩,刘云青,宁 敏,等.湿法腐蚀研究PVT法生长的SiC单晶中的位错[J].半导体技术,2014,39(12):926-929+935. ZHANG H Y, LIU Y Q, NING M, et al. Research on dislocation of SiC crystal grown by the PVT using wet etching technology[J]. Semiconductor Technology, 2014, 39(12): 926-929+935(in Chinese). [39] KIMOTO T, COOPER J. Fundamentals of silicon carbide technology[J]. Wiley-IEEE Press, 2014, 10.1002/9781118313534:1-10. [40] OHTANI N, KATSUNO M, TSUGE H, et al. Propagation behavior of threading dislocations during physical vapor transport growth of silicon carbide (SiC) single crystals[J]. Journal of Crystal Growth, 2006, 286(1): 55-60. [41] KIMOTO T, WATANABE H. Defect engineering in SiC technology for high-voltage power devices[J]. Applied Physics Express, 2020, 13(12): 120101. [42] KIMOTO T. Material science and device physics in SiC technology for high-voltage power devices[J]. Japanese Journal of Applied Physics, 2015, 54(4): 040103. [43] SUO H, TSUKIMOTO S, ETO K, et al. Evaluation of the increase in threading dislocation during the initial stage of physical vapor transport growth of 4H-SiC[J]. Japanese Journal of Applied Physics, 2018, 57(6): 065501. [44] TAKAHASHI J, OHTANI N, KANAYA M. Structural defects in α-SiC single crystals grown by the modified-Lely method[J]. Journal of Crystal Growth, 1996, 167(3/4): 596-606. [45] WELLMANN P J, QUEREN D, MÜLLER R, et al. Basal plane dislocation dynamics in highly p-type doped versus highly n-type doped SiC[J]. Materials Science Forum, 2006, 527/528/529: 79-82. [46] FRANK F C. Capillary equilibria of dislocated crystals[J]. Acta Crystallographica, 1951, 4(6): 497-501. [47] 王凤府.原料中掺入Si粉对SiC晶体质量的影响[D].西安:西安理工大学,2013. WANG F F. Effect of doping Si powder in raw materials on the quality of SiC crystal[D]. Xi’an: Xi’an University of Technology, 2013(in Chinese). [48] HUANG X R, BLACK D R, MACRANDER A T, et al. High-geometrical-resolution imaging of dislocations in SiC using monochromatic synchrotron topography[J]. Applied Physics Letters, 2007, 91(23): 231903. [49] FUJIE F, PENG H Y, AILIHUMAER T, et al. Synchrotron X-ray topographic image contrast variation of screw-type basal plane dislocations located at different depths below the crystal surface in 4H-SiC[J]. Acta Materialia, 2021, 208: 116746. [50] NISHIGUCHI T, FURUSHO T, ISSHIKI T, et al. Pair-generation of the basal-plane-dislocation during crystal growth of SiC[J]. Materials Science Forum, 2008, 600/601/602/603: 329-332. [51] OHTANI, NOBORU. Dislocation formation during physical vapor transport growth of 4H-SiC crystals[J]. Wide Bandgap Semiconductors for Power Electronics: Materials, Devices, Applications, 2021,1: 1-32. [52] OHSHIGE C, TAKAHASHI T, OHTANI N, et al. Defect formation during the initial stage of physical vapor transport growth of 4H-SiC in the[1120][J]. Journal of Crystal Growth, 2014, 408: 1-6. [53] MATSUHATA H, YAMAGUCHI H, SEKIGUCHI T, et al. Analysis of dislocation structures in 4H-SiC by synchrotron X-ray topography[J]. Electrical Engineering in Japan, 2016, 197(3): 3-17. [54] 中国科学院上海硅酸盐研究所碳化硅晶体项目部.碳化硅晶体生长与缺陷[M].北京:科学出版社,2012. Silicon Carbide Crystal Project Department of Shanghai Institute of Ceramics, Chinese Academy of Sciences. Silicon carbide crystal growth and defects[M]. Beijing: Science Press, 2012(in Chinese). [55] ZHAN S D, DONG B Y, WANG H Q, et al. A novel approach for bulk micromachining of 4H-SiC by tool-based electrolytic plasma etching in HF-free aqueous solution[J]. Journal of the European Ceramic Society, 2021, 41(10): 5075-5087. [56] ZIMMER K, EHRHARDT M, LORENZ P, et al. Etching of SiC-SiC-composites by a laser-induced plasma in a reactive gas[J]. Ceramics International, 2022, 48(1): 90-95. [57] TOH D, BUI P V, YAMAUCHI K, et al. Photoelectrochemical oxidation assisted catalyst-referred etching for SiC (0001) surface[J]. International Journal of Automation Technology, 2021, 15(1): 74-79. [58] YANG T L, KITA K. Considerations on the kinetic correlation between SiC nitridation and etching at the 4H-SiC(0001)/SiO2 interface in N2 and N2/H2 annealing[J]. Japanese Journal of Applied Physics, 2022, 61(SC): SC1077. [59] LI C, HE Z D, WANG Q D, et al. Performance improvement of PEDOT∶PSS/N-Si heterojunction solar cells by alkaline etching[J].Silicon, 2022, 14(5): 2299-2307. [60] KATSUNO M, OHTANI N, TAKAHASHI J, et al. Etching kinetics of α-SiC single crystals by molten KOH[J]. Materials Science Forum, 1998, 264/265/266/267/268: 837-840. [61] TANI K, FUJIMOTO T, KAMEI K, et al. Evolution of threading edge dislocations at earlier stages of PVT growth for 4H-SiC single crystals[J]. Materials Science Forum, 2016, 858: 73-76. [62] 苗瑞霞,张玉明,汤晓燕,等.SiC晶体缺陷的阴极荧光无损表征研究[J].光谱学与光谱分析,2010,30(3):702-705. MIAO R X, ZHANG Y M, TANG X Y, et al. The study of nondestructive defect characterization of SiC by cathodoluminescence[J]. Spectroscopy and Spectral Analysis, 2010, 30(3): 702-705(in Chinese). [63] 蒋建华.同步辐射X射线形貌术在晶体生长和缺陷研究中的应用[J].同步辐射装置用户科技论文集,2000(1):314-321. JIANG J H. Application of synchrotron radiation X-ray topography in crystal growth and defect study[J]. Journal of User Science and Technology of Synchrotron Radiation Equipment, 2000(1): 314-321(in Chinese). [64] RAGHOTHAMACHAR B, DUDLEY M, DHANARAJ G. X-ray topography techniques for defect characterization of crystals[M]//Springer Handbook of Crystal Growth. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010: 1425-1451. [65] EUN T H, YEO I G, KIM J Y, et al. Investigation on the threading dislocations formed by lattice misfits during initial stage of sublimation growth of 4H-SiC[J]. Materials Science Forum, 2020, 1004: 51-56. [66] BERWIAN P, KAMINZKY D, ROßHIRT K, et al. Imaging defect luminescence of 4H-SiC by ultraviolet-photoluminescence[J]. Solid State Phenomena, 2015, 242: 484-489. [67] LUO H, LI J J, YANG G, et al. Electronic and optical properties of threading dislocations in n-type 4H-SiC[J]. ACS Applied Electronic Materials, 2022, 4(4): 1678-1683. [68] FENG X F, ZANG Y. Raman scattering properties of structural defects in SiC[C]//Proceedings of the 2016 3rd International Conference on Mechatronics and Information Technology. April 9-10, 2016. Shenzhen, China, Paris, France: Atlantis Press, 2016. [69] YANG YING, LIN TAO, CHEN ZHIMING. Effect of growth gas flow rate on the defects of SiC single crystal[J]. Chinese Journal of Semiconductors, 2008,29(5):851-854. [70] 杨祥龙, 徐现刚, 王垚浩,等. 籽晶托及降低碳化硅单晶中穿透型位错密度的方法:CN202010198749.7[P].2020.06.12. YANG X L, XU X G, WANG Y H, et al. Method of seed support and reducing penetration dislocation density in silicon carbide single crystal: CN202010198749.7[P]. 2020.06.12(in Chinese). [71] CHEN X F, ZHANG F S, YANG X L, et al. Reduction of dislocation density of SiC crystals grown on seeds after H2 etching[J]. 2016 European Conference on Silicon Carbide & Related Materials (ECSCRM), 2016: 1. [72] 李 赟. 降低碳化硅外延基平面位错密度的方法:CN201611158953.6[P].2019.11.22. LI Y. Method for reducing the dislocation density of silicon carbide epitaxial base plane: CN201611158953.6[P]. 2019.11.22(in Chinese). [73] MURAYAMA K, HORI T, HARADA S, et al. Two-step SiC solution growth for dislocation reduction[J]. Journal of Crystal Growth, 2017, 468: 874-878. [74] KOMATSU N, MITANI T, HAYASHI Y, et al. Application of defect conversion layer by solution growth for reduction of TSDs in 4H-SiC bulk crystals by PVT growth[J]. Materials Science Forum, 2019, 963: 71-74. [75] NAKAMURA D, GUNJISHIMA I, YAMAGUCHI S, et al. Ultrahigh-quality silicon carbide single crystals[J]. Nature, 2004, 430(7003): 1009-1012. [76] YAMAMOTO Y, HARADA S, SEKI K, et al. High-efficiency conversion of threading screw dislocations in 4H-SiC by solution growth[J]. Applied Physics Express, 2012, 5(11): 115501. [77] MANNING I, ZHANG J, THOMAS B, et al. Large area 4H SiC products for power electronic devices[J]. Materials Science Forum, 2016, 858: 11-14. [78] TOKUDA Y, HOSHINO N, KUNO H, et al. Fast 4H-SiC bulk growth by high-temperature gas source method[J]. Materials Science Forum, 2020, 1004: 5-13. [79] KOJIMA J, TOKUDA Y, MAKINO E, et al. Developing technologies of SiC gas source growth method[J]. Materials Science Forum, 2016, 858: 23-28. [80] MANNING I, MATSUDA Y, CHUNG G, et al. Progress in bulk 4H SiC crystal growth for 150 mm wafer production[J]. Materials Science Forum, 2020, 1004: 37-43. [81] POWELL A R, SUMAKERIS J J, KHLEBNIKOV Y, et al. Bulk growth of large area SiC crystals[J]. Materials Science Forum, 2016, 858: 5-10. [82] MUSOLINO M, XU X P, WANG H, et al. Paving the way toward the world’s first 200 mm SiC pilot line[J]. Materials Science in Semiconductor Processing, 2021, 135: 106088. |
| [1] | ZHAO Qingsong, NIU Xiaodong, GU Xiaoying, DI Juqing. Growth and Properties of Large Size Ultra High Purity Germanium Single Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 34-39. |
| [2] | LIU Shuai, XIONG Huifan, YANG Xia, YANG Deren, PI Xiaodong, SONG Lihui. Effects of Electron Irradiation on Defects of 4H-SiC MOS Materials [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1536-1541. |
| [3] | QIN Zuoyan, JIN Lei, LI Wenliang, TAN Jun, HE Guangze, WU Honglei. Regulation of AlN Crystal Growth Mode by PVT Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1542-1549. |
| [4] | CHENG Jiahui, YANG Lei, WANG Jinnan, GONG Chunsheng, ZHANG Zesheng, JIAN Jikang. Molten KOH Etching Behaviors of Heavily Doped P-Type SiC [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(5): 773-780. |
| [5] | GUI Kaixuan, LUO Xiangjie, LIU Fangyu, ZHAO Xiaoyu. Fabrication and Electromagnetic Wave Absorption Performance of C/C Composites Modified by SiC Nanowires [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(5): 889-898. |
| [6] | KANG Jie, DING Ziyang, WANG Xiaoyan, LI Lianrong, SUN Weiyun, JIAO Can, SONG Yuepeng. Particle Size Regulation of SiC Quantum Dots Prepared by Corrosion Method and Effect of Size on Optical Properties [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(4): 684-691. |
| [7] | WANG Yaodong, LI Xiaodong, YANG Penghui, ZHANG Huidong, LIU Xiuying, YU Jingxin. Theoretical Study on Design and Hydrogen Storage Properties of High-Valence Boron-Phosphorous Based COFs [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(4): 730-738. |
| [8] | XIA Zhenghui, LI Tengkun, REN Guoqiang, XIE Kaihe, LU Wenhao, LI Shaozhe, ZHENG Shunan, GAO Xiaodong, XU Ke. Dislocation Density Evolution Study of GaN Single Crystal Growth by Ammonothermal Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(3): 480-486. |
| [9] | REN Diansheng, WANG Zhizhen, ZHANG Shuhui, WANG Yuanli. Fabrication and Characterization of 8 Inch Semiconducting GaAs Single Crystal Substrate [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(3): 487-496. |
| [10] | GU Xiaoying, ZHAO Qingsong, NIU Xiaodong, DI Juqing, ZHANG Jiaying, XIAO Yi, LUO Kai. Preparation and Properties of 13N Ultra-High Purity Germanium Single Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(3): 497-502. |
| [11] | GUO Yu, LIU Chunjun, ZHANG Xinhe, SHEN Pengyuan, ZHANG Bo, LOU Yanfang, PENG Tonghua, YANG Jian. Analysis and Review of Influencing Factors of SiC Homo-Epitaxial Wafers Quality [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(2): 210-217. |
| [12] | ZHANG Yuan, GAO Caiyun, LI Dong, LI Mei. High Efficiency CO2 Composite Absorbent Prepared by Modification of Carbide Slag [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(2): 344-354. |
| [13] | LIU Shuai, SONG Lihui, YANG Deren, PI Xiaodong. Research Progress on High-k Gate Dielectrics Materials for 4H-SiC Based Power Devices [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(12): 2027-2042. |
| [14] | GUO Yi, NIU Miaomiao. Thermophysical Properties of (Sm0.5Yb0.5)3TaO7 Ceramics for Thermal Barrier Coating Applications [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(12): 2066-2072. |
| [15] | ZHANG Pan, PANG Guowang, YIN Wei, MA Yabin, ZHANG Junzhou, YANG Huihui, QIN Yanjun. Theoretical Study of the Structure, Electronic and Optical Properties of 4H-SiC under High Pressure [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(12): 2104-2112. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
E-mail Alert
RSS