JOURNAL OF SYNTHETIC CRYSTALS ›› 2023, Vol. 52 ›› Issue (6): 982-996.
Special Issue: 半导体薄膜与外延技术
• Optoelectronic Thin Films • Previous Articles Next Articles
SONG Changkun, HUANG Xiaoying, CHEN Yingxin, YU Ying, YU Siyuan
Received:2023-04-24
Online:2023-06-15
Published:2023-06-30
| [1] NIELSEN M A, CHUANG I, GROVER L K. Quantum computation and quantum information[J]. American Journal of Physics, 2002, 70(5): 558-559. [2] SHOR P W. Algorithms for quantum computation: discrete logarithms and factoring[C]//Proceedings 35th Annual Symposium on Foundations of Computer Science. November 20-22, 1994, Santa Fe, NM, USA. IEEE, 2002: 124-134. [3] KUPKO T, VON HELVERSEN M, RICKERT L, et al. Tools for the performance optimization of single-photon quantum key distribution[J]. NPJ Quantum Information, 2020, 6: 29. [4] SCARANI V, BECHMANN-PASQUINUCCI H, CERF N J, et al. The security of practical quantum key distribution[J]. Reviews of Modern Physics, 2009, 81(3): 1301-1350. [5] BOUWMEESTER D, PAN J W, MATTLE K, et al. Experimental quantum teleportation[J]. Nature, 1997, 390(6660): 575-579. [6] KORZH B, LIM C C W, HOULMANN R, et al. Provably secure and practical quantum key distribution over 307 km of optical fibre[J]. Nature Photonics, 2015, 9(3): 163-168. [7] WALBORN S P, PIMENTEL A H, DAVIDOVICH L, et al. Quantum-enhanced sensing from hyperentanglement[J]. Physical Review A, 2018, 97: 010301. [8] AHARONOVICH I, ENGLUND D, TOTH M. Solid-state single-photon emitters[J]. Nature Photonics, 2016, 10(10): 631-641. [9] DING X, HE Y, DUAN Z C, et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar[J]. Physical Review Letters, 2016, 116(2): 020401. [10] WANG H, DUAN Z C, LI Y H, et al. Near-transform-limited single photons from an efficient solid-state quantum emitter[J]. Physical Review Letters, 2016, 116(21): 213601. [11] DIETRICH C P, FIORE A, THOMPSON M G, et al. GaAs integrated quantum photonics: towards compact and multi-functional quantum photonic integrated circuits[J]. Laser & Photonics Reviews, 2016, 10(6): 857. [12] ZHAO T M, CHEN Y, YU Y, et al. Advanced technologies for quantum photonic devices based on epitaxial quantum dots[J]. Advanced Quantum Technologies, 2020, 3(2): 1900034. [13] ZHOU X Y, ZHAI L A, LIU J. Epitaxial quantum dots: a semiconductor launchpad for photonic quantum technologies[J]. Photonics Insights, 2022, 1(2): R07. [14] MICHLER P, KIRAZ A, BECHER C, et al. A quantum dot single-photon turnstile device[J]. Science, 2000, 290(5500): 2282-2285. [15] STIEVATER T H, LI X Q, STEEL D G, et al. Rabi oscillations of excitons in single quantum dots[J]. Physical Review Letters, 2001, 87(13): 133603. [16] SANTORI C, FATTAL D, VUCˇKOVIC' J, et al. Indistinguishable photons from a single-photon device[J]. Nature, 2002, 419(6907): 594-597. [17] MULLER A, FLAGG E B, BIANUCCI P, et al. Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity[J]. Physical Review Letters, 2007, 99(18): 187402. [18] VAMIVAKAS A N, ZHAO Y, LU C Y, et al. Erratum: spin-resolved quantum-dot resonance fluorescence[J]. Nature Physics, 2009, 5(12): 925. [19] HE Y M, HE Y, WEI Y J, et al. On-demand semiconductor single-photon source with near-unity indistinguishability[J]. Nature Nanotechnology, 2013, 8(3): 213-217. [20] WANG J P, GONG M, GUO G C, et al. Towards scalable entangled photon sources with self-assembled InAs/GaAs quantum dots[J]. Physical Review Letters, 2015, 115(6): 067401. [21] MÜLLER M, BOUNOUAR S, JÖNS K D, et al. On-demand generation of indistinguishable polarization-entangled photon pairs[J]. Nature Photonics, 2014, 8(3): 224-228. [22] STEVENSON R M, YOUNG R J, ATKINSON P, et al. A semiconductor source of triggered entangled photon pairs[J]. Nature, 2006, 439(7073): 179-182. [23] HUBER D, REINDL M, COVRE DA SILVA S F, et al. Strain-tunable GaAs quantum dot: a nearly dephasing-free source of entangled photon pairs on demand[J]. Physical Review Letters, 2018, 121(3): 033902. [24] TIRANOV A, ANGELOPOULOU V, VAN DIEPEN C J, et al. Collective super- and subradiant dynamics between distant optical quantum emitters[J]. Science, 2023, 379(6630): 389-393. [25] TANG J, CAO S, GAO Y N, et al. Charge state control in single InAs/GaAs quantum dots by external electric and magnetic fields[J]. Applied Physics Letters, 2014, 105(4): 041109. [26] YU Y, SHANG X J, LI M F, et al. Single InAs quantum dot coupled to different “environments” in one wafer for quantum photonics[J]. Applied Physics Letters, 2013, 102(20): 201103. [27] KROUTVAR M, DUCOMMUN Y, HEISS D, et al. Optically programmable electron spin memory using semiconductor quantum dots[J]. Nature, 2004, 432(7013): 81-84. [28] PETTA J R, JOHNSON A C, TAYLOR J M, et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots[J]. Science, 2005, 309(5744): 2180-2184. [29] ATATÜRE M, DREISER J, BADOLATO A, et al. Quantum-dot spin-state preparation with near-unity fidelity[J]. Science, 2006, 312(5773): 551-553. [30] XU X D, YAO W, SUN B, et al. Optically controlled locking of the nuclear field via coherent dark-state spectroscopy[J]. Nature, 2009, 459(7250): 1105-1109. [31] LU C Y, ZHAO Y, VAMIVAKAS A N, et al. Direct measurement of spin dynamics in InAs/GaAs quantum dots using time-resolved resonance fluorescence[J]. Physical Review B, 2010, 81(3): 035332. [32] GAO W B, FALLAHI P, TOGAN E, et al. Quantum teleportation from a propagating photon to a solid-state spin qubit[J]. Nature Communications, 2013, 4: 2744. [33] SCHWARTZ I, COGAN D, SCHMIDGALL E R, et al. Deterministic generation of a cluster state of entangled photons[J]. Science, 2016, 354(6311): 434-437. [34] KUHLMANN A V, PRECHTEL J H, HOUEL J, et al. Transform-limited single photons from a single quantum dot[J]. Nature Communications, 2015, 6: 8204. [35] PEDERSEN F T, WANG Y, OLESEN C T, et al. Near transform-limited quantum dot linewidths in a broadband photonic crystal waveguide[J]. ACS Photonics, 2020, 7(9): 2343-2349. [36] SOMASCHI N, GIESZ V, DE SANTIS L, et al. Near-optimal single-photon sources in the solid state[J]. Nature Photonics, 2016, 10(5): 340-345. [37] BART N, DANGEL C, ZAJAC P, et al. Wafer-scale epitaxial modulation of quantum dot density[J]. Nature Communications, 2022, 13: 1633. [38] TOMM N, JAVADI A, ANTONIADIS N O, et al. A bright and fast source of coherent single photons[J]. Nature Nanotechnology, 2021, 16(4): 399-403. [39] UPPU R, PEDERSEN F T, WANG Y, et al. Scalable integrated single-photon source[J]. Science Advances, 2020, 6(50): eabc8268. [40] HUANG X Y, SU R B, YANG J W, et al. Wafer-scale epitaxial low density InAs/GaAs quantum dot for single photon emitter in three-inch substrate[J]. Nanomaterials, 2021, 11(4): 930. [41] UNSLEBER S, HE Y M, GERHARDT S, et al. Highly indistinguishable on-demand resonance fluorescence photons from a deterministic quantum dot micropillar device with 74% extraction efficiency[J]. Optics Express, 2016, 24(8): 8539. [42] SCHIMPF C, REINDL M, BASSO BASSET F, et al. Quantum dots as potential sources of strongly entangled photons: perspectives and challenges for applications in quantum networks[J]. Applied Physics Letters, 2021, 118(10): 100502. [43] SEGUIN R, SCHLIWA A, RODT S, et al. Size-dependent fine-structure splitting in self-organized InAs/GaAs quantum dots[J]. Physical Review Letters, 2005, 95(25): 257402. [44] SINGH R, BESTER G. Nanowire quantum dots as an ideal source of entangled photon pairs[J]. Physical Review Letters, 2009, 103(6): 063601. [45] WALTHER T, CULLIS A G, NORRIS D J, et al. Nature of the stranski-krastanow transition during epitaxy of InGaAs on GaAs[J]. Physical Review Letters, 2001, 86(11): 2381-2384. [46] SEGUIN R, SCHLIWA A, GERMANN T D, et al. Control of fine-structure splitting and excitonic binding energies in selected individual InAs/GaAs quantum dots[J]. Applied Physics Letters, 2006, 89(26): 263109. [47] KITAMURA S, SENSHU M, KATSUYAMA T, et al. Optical characterization of In-flushed InAs/GaAs quantum dots emitting a broadband spectrum with multiple peaks at ~1 μm[J]. Nanoscale Research Letters, 2015, 10: 231. [48] RUIZ-MARÍN N, REYES D F, STANOJEVIC' L, et al. Effect of the AlAs capping layer thickness on the structure of InAs/GaAs QD[J]. Applied Surface Science, 2022, 573: 151572. [49] GURIOLI M, WANG Z M, RASTELLI A, et al. Droplet epitaxy of semiconductor nanostructures for quantum photonic devices[J]. Nature Materials, 2019, 18(8): 799-810. [50] CHUNG T H, JUSKA G, MORONI S T, et al. Selective carrier injection into patterned arrays of pyramidal quantum dots for entangled photon light-emitting diodes[J]. Nature Photonics, 2016, 10(12): 782-787. [51] LIU X M, HA N, NAKAJIMA H, et al. Vanishing fine-structure splittings in telecommunication-wavelength quantum dots grown on (111)A surfaces by droplet epitaxy[J]. Physical Review B, 2014, 90(8): 081301. [52] GOLDMANN E, BARTHEL S, FLORIAN M, et al. Excitonic fine-structure splitting in telecom-wavelength InAs/GaAs quantum dots: statistical distribution and height-dependence[J]. Applied Physics Letters, 2013, 103(24): 242102. [53] HUANG X Y, YANG J W, SONG C K, et al. Self-assembled InAs/GaAs single quantum dots with suppressed InGaAs wetting layer states and low excitonic fine structure splitting for quantum memory[J]. Nanophotonics, 2022, 11(13): 3093-3100. [54] GISIN N, RIBORDY G, TITTEL W, et al. Quantum cryptography[J]. Reviews of Modern Physics, 2002, 74(1): 145-195. [55] KIMBLE H J. The quantum Internet[J]. Nature, 2008, 453(7198): 1023-1030. [56] CAO X, ZOPF M, DING F. Telecom wavelength single photon sources[J]. Journal of Semiconductors, 2019, 40(7): 071901. [57] DUAN L M, LUKIN M D, CIRAC J I, et al. Long-distance quantum communication with atomic ensembles and linear optics[J]. Nature, 2001, 414(6862): 413-418. [58] HUA Y L, ZHOU Z Q, LI C F, et al. Quantum light storage in rare-earth-ion-doped solids[J]. Chinese Physics B, 2018, 27(2): 020303. [59] TANG J S, ZHOU Z Q, WANG Y T, et al. Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory[J]. Nature Communications, 2015, 6: 8652. [60] XU S W, WEI Y M, SU R B, et al. Bright single-photon sources in the telecom band by deterministically coupling single quantum dots to a hybrid circular Bragg resonator[J]. Photonics Research, 2022, 10(8): B1. [61] LIN Y T, YE Y Z, FANG W. Electrically driven single-photon sources[J]. Journal of Semiconductors, 2019, 40(7): 071904. [62] YANG J Z, ZOPF M, DING F. Strain tunable quantum dot based non-classical photon sources[J]. Journal of Semiconductors, 2020, 41(1): 011901. [63] SALTER C L, STEVENSON R M, FARRER I, et al. An entangled-light-emitting diode[J]. Nature, 2010, 465(7298): 594-597. [64] BENNETT A J. Electrical control of semiconductor quantum dot single photon sources[M]//Semiconductor Nanodevices. Amsterdam: Elsevier, 2021: 295-317. [65] BENNETT A J, POOLEY M A, STEVENSON R M, et al. Electric-field-induced coherent coupling of the exciton states in a single quantum dot[J]. Nature Physics, 2010, 6(12): 947-950. [66] XIANG Z H, HUWER J, SKIBA-SZYMANSKA J, et al. A tuneable telecom wavelength entangled light emitting diode deployed in an installed fibre network[J]. Communications Physics, 2020, 3: 121. [67] LÖBL M C, SÖLLNER I, JAVADI A, et al. Narrow optical linewidths and spin pumping on charge-tunable close-to-surface self-assembled quantum dots in an ultrathin diode[J]. Physical Review B, 2017, 96(16): 165440. [68] CONTERIO M J, SKÖLD N, ELLIS D J P, et al. A quantum dot single photon source driven by resonant electrical injection[J]. Applied Physics Letters, 2013, 103(16): 162108. [69] EDIGER M, DALGARNO P A, SMITH J M, et al. Controlled generation of neutral, negatively-charged and positively-charged excitons in the same single quantum dot[J]. Applied Physics Letters, 2005, 86(21): 211909. [70] BRUNNER D, GERARDOT B D, DALGARNO P A, et al. A coherent single-hole spin in a semiconductor[J]. Science, 2009, 325(5936): 70-72. [71] KRONER M, GOVOROV A O, REMI S, et al. The nonlinear fano effect[J]. Nature, 2008, 451(7176): 311-314. [72] WANG Z M, LIANG B L, SABLON K A, et al. Nanoholes fabricated by self-assembled gallium nanodrill on GaAs(100)[J]. Applied Physics Letters, 2007, 90(11): 113120. [73] WU J A, WANG Z M. Droplet epitaxy for advanced optoelectronic materials and devices[J]. Journal of Physics D: Applied Physics, 2014, 47(17): 173001. [74] HUO Y H, RASTELLI A, SCHMIDT O G. Ultra-small excitonic fine structure splitting in highly symmetric quantum dots on GaAs (001) substrate[J]. Applied Physics Letters, 2013, 102(15): 152105. [75] KEIL R, ZOPF M, CHEN Y, et al. Solid-state ensemble of highly entangled photon sources at rubidium atomic transitions[J]. Nature Communications, 2017, 8: 15501. [76] HUANG X Y, ZHONG H C, YANG J W, et al. Morphological engineering of aluminum droplet etched nanoholes for symmetric GaAs quantum dot epitaxy[J]. Nanotechnology, 2020, 31(49): 495701. [77] YU Y, ZHONG H C, YANG J W, et al. Highly uniform and symmetric epitaxial InAs quantum dots embedded inside Indium droplet etched nanoholes[J]. Nanotechnology, 2019, 30(48): 485001. [78] BHATTACHARYA P, KAMATH K, PHILLIPS J, et al. Self-organized growth of In(Ga)As/GaAs quantum dots and their opto-electronic device applications[J]. Bulletin of Materials Science, 1999, 22(3): 519-529. [79] PATELLA F, ARCIPRETE F, FANFONI M, et al. Apparent critical thickness versus temperature for InAs quantum dot growth on GaAs(001)[J]. Applied Physics Letters, 2006, 88(16): 161903. [80] SAMESHIMA K, SANO T, YAMAGUCHI K. Self-formation of ultrahigh-density (1012 cm-2) InAs quantum dots on InAsSb/GaAs(001) and their photoluminescence properties[J]. Applied Physics Express, 2016, 9(7): 075501. [81] SHANG X J, XU J X, MA B, et al. Proper in deposition amount for on-demand epitaxy of InAs/GaAs single quantum dots[J]. Chinese Physics B, 2016, 25(10): 107805. [82] GARCIA A, MATEO C M, DEFENSOR M, et al. Influence of As4 flux on the growth kinetics, structure, and optical properties of InAs/GaAs quantum dots[J]. Journal of Applied Physics, 2007, 102(7): 073526. [83] LEONARD D, POND K, PETROFF P M. Critical layer thickness for self-assembled InAs Islands on GaAs[J]. Physical Review B, 1994, 50(16): 11687-11692. [84] SAUTTER K E, VALLEJO K D, SIMMONDS P J. Strain-driven quantum dot self-assembly by molecular beam epitaxy[J]. Journal of Applied Physics, 2020, 128(3): 031101. [85] CHIA C K, ZHANG Y W, WONG S S, et al. Testing the upper limit of InAs/GaAs self-organized quantum dots density by fast growth rate[J]. Superlattices and Microstructures, 2008, 44(4/5): 420-424. [86] SUN J E, JIN P, WANG Z G. Extremely low density InAs quantum dots realized in situ on (100) GaAs[J]. Nanotechnology, 2004, 15(12): 1763-1766. [87] SASAKURA H, KAYAMORI S, ADACHI S, et al. Effect of indium-flush method on the control of photoluminescence energy of highly uniform self-assembled InAs quantum dots by slow molecular beam epitaxy growth[J]. Journal of Applied Physics, 2007, 102(1): 013515. [88] REZGUI K, OTHMEN R, CAVANNA A, et al. The improvement of InAs/GaAs quantum dot properties capped by graphene[J]. Journal of Raman Spectroscopy, 2013, 44(11): 1529-1533. [89] WANG Y, SHENG X Z, LIU Y, et al. PL of low-density InAs/GaAs quantum dots with different bimodal populations[J]. Micro & Nano Letters, 2017, 12(9): 599-604. [90] LEE J S, REN H W, SUGOU S, et al. In0.5Ga0.5As quantum dot intermixing and evaporation in GaAs capping layer growth[J]. Journal of Applied Physics, 1998, 84(12): 6686-6688. [91] TODA Y, MORIWAKI O, NISHIOKA M, et al. Efficient carrier relaxation mechanism in InGaAs/GaAs self-assembled quantum dots based on the existence of continuum states[J]. Physical Review Letters, 1999, 82(20): 4114-4117. [92] VASANELLI A, FERREIRA R, BASTARD G. Continuous absorption background and decoherence in quantum dots[J]. Physical Review Letters, 2002, 89(21): 216804. [93] SINGH R, BESTER G. Lower bound for the excitonic fine structure splitting in self-assembled quantum dots[J]. Physical Review Letters, 2010, 104(19): 196803. [94] TIRANOV A, ORTU A, WELINSKI S, et al. Spectroscopic study of hyperfine properties in 171Yb3+∶Y2SiO5[J]. Physical Review B, 2018, 98(19): 195110. [95] OLBRICH F, KETTLER J, BAYERBACH M, et al. Temperature-dependent properties of single long-wavelength InGaAs quantum dots embedded in a strain reducing layer[J]. Journal of Applied Physics, 2017, 121(18): 184302. [96] PAUL M, KETTLER J, ZEUNER K, et al. Metal-organic vapor-phase epitaxy-grown ultra-low density InGaAs/GaAs quantum dots exhibiting cascaded single-photon emission at 1.3 μm[J]. Applied Physics Letters, 2015, 106(12): 122105. [97] YUAN Z L, KARDYNAL B E, STEVENSON R M, et al. Electrically driven single-photon source[J]. Science, 2002, 295(5552): 102-105. [98] BENNETT A J, PATEL R B, SKIBA-SZYMANSKA J, et al. Giant Stark effect in the emission of single semiconductor quantum dots[J]. Applied Physics Letters, 2010, 97(3): 031104. [99] WARBURTON R J, SCHÄFLEIN C, HAFT D, et al. Optical emission from a charge-tunable quantum ring[J]. Nature, 2000, 405(6789): 926-929. [100] SCHNAUBER P, SCHALL J, BOUNOUAR S, et al. Deterministic integration of quantum dots into on-chip multimode interference beamsplitters using in situ electron beam lithography[J]. Nano Letters, 2018, 18(4): 2336-2342. [101] ZHANG J X, DING F, ZALLO E, et al. A nanomembrane-based wavelength-tunable high-speed single-photon-emitting diode[J]. Nano Letters, 2013, 13(12): 5808-5813. [102] GHALI M, OHTANI K, OHNO Y, et al. Generation and control of polarization-entangled photons from GaAs island quantum dots by an electric field[J]. Nature Communications, 2012, 3: 661. [103] PRECHTEL J H, KUHLMANN A V, HOUEL J, et al. Decoupling a hole spin qubit from the nuclear spins[J]. Nature Materials, 2016, 15(9): 981-986. [104] LUDWIG A, PRECHTEL J H, KUHLMANN A V, et al. Ultra-low charge and spin noise in self-assembled quantum dots[J]. Journal of Crystal Growth, 2017, 477: 193-196. [105] BENNETT A J, UNITT D C, SEE P, et al. Microcavity single-photon-emitting diode[J]. Applied Physics Letters, 2005, 86(18): 181102. [106] DA SILVA S F C, UNDEUTSCH G, LEHNER B, et al. GaAs quantum dots grown by droplet etching epitaxy as quantum light sources[J]. Applied Physics Letters, 2021, 119(12): 120502. |
| [1] | CHEN Fengwu, LYU Wenli, GONG Xin, XUE Yong, GONG Xiaoliang. Progress and Prospect of Molecular Beam Epitaxy Equipment at Home and Abroad [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1494-1503. |
| [2] | LI Bingxin, DING Yuanfeng, LU Hong. Research Progress on Epitaxial Growth and Transport Property of Single Crystal α-Sn Films [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(6): 1025-1035. |
| [3] | ZHAO Junyi, LIU Runze, LOU Yiyang, HUO Yongheng. Basic Materials and Devices of the Deterministic Solid-State Quantum Light Sources [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(6): 960-981. |
| [4] | LIU Huan, SHAO Pengfei, CHEN Songlin, ZHOU Hui, LI Siqi, TAO Tao, XIE Zili, LIU Bin, CHEN Dunjun, ZHENG Youdou, ZHANG Rong, WANG Ke. AlN Films Fabricated by Molecular Beam Epitaxy with Metal Modulation [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(5): 878-885. |
| [5] | LIANG Xiao, LI Siqi, WANG Zhongwei, SHAO Pengfei, CHEN Songlin, TAO Tao, XIE Zili, LIU Bin, CHEN Dunjun, ZHENG Youdou, ZHANG Rong, WANG Ke. Study on Molecular Beam Epitaxy of High Al Content AlGaN Thin Films and Si Doping [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(5): 783-790. |
| [6] | REN Yijing, MA Xinguo, ZHANG Feng, LU Jingjing, ZHANG Li, WANG Han. Preparation of BaTiO3 Thin Film and Its Application in Electro-Optic Modulator [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(4): 688-700. |
| [7] | XIE Jinglong, YUAN Guowen, LIAO Junjie, PAN Rui, FAN Xing, ZHANG Weiwei, YUAN Ziyuan, LI Chen, GAO Libo, LU Hong. Remote Epitaxy of Ge Nanorods Through Graphene [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(9-10): 1769-1776. |
| [8] | CAI Wenwei, LIU Xiangwei, WANG Hao, WANG Jianyuan, ZHENG Licheng, WANG Yongjia, ZHOU Yinghui, YANG Xu, LI Jinchai, HUANG Kai, KANG Junyong. Effect of Growth Pressure on Properties of β-Ga2O3 Thin Films Grown by Molecular Beam Epitaxy [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(7): 1152-1157. |
| [9] | CHANG Menglin, FAN Xing, ZHANG Weiwei, YAO Jinshan, PAN Rui, LI Chen, LU Hong. Epitaxial Growth of GaAs on Si (111) Controlled by Al/AlAs Interlayer [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(11): 1815-1822. |
| [10] | JIANG Chong, WANG Yi, DING Zhao, HUANG Yanbin, LUO Zijiang, LI Zhihong, LI Ershi, GUO Xiang. Diffusion and Nucleation of Aluminum Droplet on GaAs(001) Surface during Molecular Beam Epitaxy Growth [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(2): 283-289. |
| [11] | KONG Jincheng, LI Yanhui, YANG Chunzhang, YANG Jin, QIN Gang, CHEN Weiye, CHEN Xiaoxuan, REN Yang, WANG Shanli, HU Xu, WANG Xiangqian, LI Xiongjun, ZHAO Jun. Progress in MBE Growth of HgCdTe at Kunming Institute of Physics [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2020, 49(12): 2221-2229. |
| [12] | GAO Han-chao;YIN Zhi-jun;ZHANG Zhu-feng. Research on Growth Stability Control of 100 mm GaAs PHEMT Epitaxial Material [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2015, 44(2): 567-570. |
| [13] | HAO Rui-ting;GUO Jie;LIU Ying;MIAO Yan-mei;XU Ying-qiang. Growth of GaSb/GaAs Heterojunction Thermal Photovoltaic Cells by MBE [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2014, 43(5): 1076-1079. |
| [14] | WANG Ke-fan;WANG Shan;GU Cheng. Effect of Si δ Doping on InAs/GaAs Quantum Dots Solar Cells [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2014, 43(12): 3151-3156. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
E-mail Alert
RSS