JOURNAL OF SYNTHETIC CRYSTALS ›› 2024, Vol. 53 ›› Issue (3): 372-394.
• Special Issue on Lithium Niobate Integrated Photonics • Previous Articles Next Articles
LIN Jintian1, GAO Renhong1,2, GUAN Jianglin2,3, LI Chuntao2,3, YAO Ni4, CHENG Ya1,2,3
Received:
2024-01-15
Online:
2024-03-15
Published:
2024-04-02
CLC Number:
LIN Jintian, GAO Renhong, GUAN Jianglin, LI Chuntao, YAO Ni, CHENG Ya. Advances in Low-Loss Thin-Film Lithium Niobate Photonic Integrated Devices[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(3): 372-394.
[1] LIN J T, BO F, CHENG Y, et al. Advances in on-chip photonic devices based on lithium niobate on insulator[J]. Photonics Research, 2020, 8(12): 1910. [2] KOMLJENOVIC T, HUANG D N, PINTUS P, et al. Photonic integrated circuits using heterogeneous integration on silicon[J]. Proceedings of the IEEE, 2018, 106(12): 2246-2257. [3] COLDREN L A, CORZINE S W, MAŠANOVIĆ M L. Diode lasers and photonic integrated circuits[M]. 2nd. Hoboken, New Jersey: John Wiley & Sons, 2012. [4] 程 亚. 薄膜铌酸锂光电器件与超大规模光子集成[J]. 中国激光, 2024, 51(1): 0119001. CHENG Y. Thin film lithium niobate electro-optic devices and ultralarge-scale photonic integration[J]. Chinese Journal of Lasers, 2024, 51(1): 0119001 (in Chinese). [5] JIA Y C, WANG L, CHEN F. Ion-cut lithium niobate on insulator technology: recent advances and perspectives[J]. Applied Physics Reviews, 2021, 8(1): 011307. [6] WANG C, BUREK M J, LIN Z, et al. Integrated high quality factor lithium niobate microdisk resonators[J]. Optics Express, 2014, 22(25): 30924-30933. [7] WU R B, ZHANG J H, YAO N, et al. Lithium niobate micro-disk resonators of quality factors above 107[J]. Optics Letters, 2018, 43(17): 4116-4119. [8] WANG M, WU R B, LIN J T, et al. Chemo-mechanical Polish lithography: a pathway to low loss large-scale photonic integration on lithium niobate on insulator[J]. Quantum Engineering, 2019, 1(1): e9. [9] WANG C, ZHANG M, CHEN X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages[J]. Nature, 2018, 562(7725): 101-104. [10] HE M B, XU M Y, REN Y X, et al. High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit/s and beyond[J]. Nature Photonics, 2019, 13: 359-364. [11] LIN J T, YAO N, HAO Z Z, et al. Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator[J]. Physical Review Letters, 2019, 122(17): 173903. [12] LU J J, LI M, ZOU C L, et al. Toward 1% single-photon anharmonicity with periodically poled lithium niobate microring resonators[J]. Optica, 2020, 7(12): 1654. [13] CHEN J Y, MA Z H, SUA Y M, et al. Ultra-efficient frequency conversion in quasi-phase-matched lithium niobate microrings[J]. Optica, 2019, 6(9): 1244. [14] YUAN S, WU Y K, DANG Z Z, et al. Strongly enhanced second harmonic generation in a thin film lithium niobate heterostructure cavity[J]. Physical Review Letters, 2021, 127(15): 153901. [15] HOU J K, LIN J T, ZHU J F, et al. Self-induced transparency in a perfectly absorbing chiral second-harmonic generator[J]. PhotoniX, 2022, 3(1): 22. [16] 刘时杰, 郑远林, 陈险峰. 铌酸锂薄膜上的非线性频率转换[J]. 光学学报, 2021, 41(8): 0823013. LIU S J, ZHENG Y L, CHEN X F. Nonlinear frequency conversion in lithium niobate thin films[J]. Acta Optica Sinica, 2021, 41(8): 0823013 (in Chinese). [17] ZHOU J X, GAO R H, LIN J T, et al. Electro-optically switchable optical true delay lines of meter-scale lengths fabricated on lithium niobate on insulator using photolithography assisted chemo-mechanical etching[J]. Chinese Physics Letters, 2020, 37(8): 084201. [18] SONG L B, CHEN J M, WU R B, et al. Electro-optically tunable optical delay line with a continuous tuning range of 220 fs in thin-film lithium niobate[J]. Optics Letters, 2023, 48(9): 2261-2264. [19] QI Z T, LI Y H, HUANG Y W, et al. A 15-user quantum secure direct communication network[J]. Light: Science & Applications, 2021, 10: 183. [20] RAO A, NADER N, STEVENS M J, et al. Photon pair generation on a silicon chip using nanophotonic periodically-poled lithium niobate waveguides[C]//2018 Conference on Lasers and Electro-Optics (CLEO). San Jose, CA, USA. IEEE, 2018: 1-2. [21] ZHAO J, MA C X, RÜSING M, et al. High quality entangled photon pair generation in periodically poled thin-film lithium niobate waveguides[J]. Physical Review Letters, 2020, 124(16): 163603. [22] XUE G T, NIU Y F, LIU X Y, et al. Ultrabright multiplexed energy-time-entangled photon generation from lithium niobate on insulator chip[J]. Physical Review Applied, 2021, 15(6): 064059. [23] XU B Y, CHEN L K, LIN J T, et al. Spectrally multiplexed and bright entangled photon pairs in a lithium niobate microresonator[J]. Science China Physics, Mechanics & Astronomy, 2022, 65(9): 294262. [24] ZHU Z Z, WANG Z, FANG Z W, et al. Low loss 1×16/40 flat type beam splitters on thin film lithium niobate using photolithography assisted chemo-mechanical etching[J]. Laser & Photonics Reviews, 2023: 2301052. [25] CHEN L, HAN X, ZHOU X D, et al. Demonstration of a high-performance 3 dB power splitter in silicon nitride loaded lithium niobate on insulator[J]. Laser & Photonics Reviews, 2023, 17(11): 2300377. [26] WANG Z, FANG Z W, LIU Z X, et al. On-chip arrayed waveguide grating fabricated on thin-film lithium niobate[J]. Advanced Photonics Research, 2024, 5(2): 2300228. [27] WU Y N, SUN X R, XUE X T, et al. Compact adiabatic polarization splitter-rotator on thin-film lithium niobate[J]. Journal of Lightwave Technology, 2023, PP(99): 1-7. [28] HAN X, CHEN L, JIANG Y H, et al. Integrated subwavelength gratings on a lithium niobate on insulator platform for mode and polarization manipulation[J]. Laser & Photonics Reviews, 2022, 16(7): 2200130. [29] WANG C, ZHANG M, YU M J, et al. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation[J]. Nature Communications, 2019, 10: 978. [30] HE Y, YANG Q F, LING J W, et al. Self-starting bi-chromatic LiNbO3 soliton microcomb[J]. Optica, 2019, 6(9): 1138. [31] LU J J, PUZYREV D N, PANKRATOV V V, et al. Two-colour dissipative solitons and breathers in microresonator second-harmonic generation[J]. Nature Communications, 2023, 14: 2798. [32] YANG C, YANG S, DU F, et al. 1550-nm band soliton microcombs in ytterbium-doped lithium-niobate microrings[J]. Laser & Photonics Reviews, 2023, 17(9): 2200510. [33] WAN S, WANG P Y, MA R, et al. Photorefraction-assisted self-emergence of dissipative Kerr solitons[J]. Laser & Photonics Reviews, 2024, 18(2): 2300627. [34] CAI L T, MAHMOUD A, KHAN M, et al. Acousto-optical modulation of thin film lithium niobate waveguide devices[J]. Photonics Research, 2019, 7(9): 1003. [35] SHAO L B, YU M J, MAITY S, et al. Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators[J]. Optica, 2019, 6(12): 1498. [36] WAN L, YANG Z Q, ZHOU W F, et al. Highly efficient acousto-optic modulation using nonsuspended thin-film lithium niobate-chalcogenide hybrid waveguides[J]. Light: Science & Applications, 2022, 11: 145. [37] YU M J, CHENG R, REIMER C, et al. Integrated electro-optic isolator on thin-film lithium niobate[J]. Nature Photonics, 2023, 17: 666-671. [38] GAO L, LIANG Y T, SONG L B, et al. Thin-film lithium niobate electro-optic isolator fabricated by photolithography assisted chemo-mechanical etching[J]. Optics Letters, 2024, 49(3): 614. [39] LUO Q, BO F, KONG Y F, et al. Advances in lithium niobate thin-film lasers and amplifiers: a review[J]. Advanced Photonics, 2023, 5(3): 034002. [40] LIN J T, FARAJOLLAHI S, FANG Z W, et al. Electro-optic tuning of a single-frequency ultranarrow linewidth microdisk laser[J]. Advanced Photonics, 2022, 4(3): 036001. [41] WANG M, FANG Z W, LIN J T, et al. Integrated active lithium niobate photonic devices[J]. Japanese Journal of Applied Physics, 2023, 62: SC0801. [42] LIU X M, YAN X S, LIU Y A, et al. Tunable single-mode laser on thin film lithium niobate[J]. Optics Letters, 2021, 46(21): 5505-5508. [43] LI T Y, WU K, CAI M L, et al. A single-frequency single-resonator laser on erbium-doped lithium niobate on insulator[J]. APL Photonics, 2021, 6(10): 101301. [44] YU S P, FANG Z W, WANG Z, et al. On-chip single-mode thin-film lithium niobate Fabry-Perot resonator laser based on Sagnac loop reflectors[J]. Optics Letters, 2023, 48(10): 2660. [45] GAO R H, GUAN J L, YAO N, et al. On-chip ultra-narrow-linewidth single-mode microlaser on lithium niobate on insulator[J]. Optics Letters, 2021, 46(13): 3131-3134. [46] ZHANG R, YANG C, HAO Z Z, et al. Integrated lithium niobate single-mode lasers by the Vernier effect[J]. Science China Physics, Mechanics & Astronomy, 2021, 64(9): 294216. [47] GAO R H, FU B T, YAO N, et al. Electro-optically tunable low phase-noise microwave synthesizer in an active lithium niobate microdisk[J]. Laser & Photonics Reviews, 2023, 17(5): 2200903. [48] ZHANG Z H, LI S M, GAO R H, et al. Erbium-ytterbium codoped thin-film lithium niobate integrated waveguide amplifier with a 27 dB internal net gain[J]. Optics Letters, 2023, 48(16): 4344-4347. [49] CAI M L, WU K, XIANG J M, et al. Erbium-doped lithium niobate thin film waveguide amplifier with 16 dB internal net gain[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2022, 28(3): 8200608. [50] DE BEECK C O, MAYOR F M, CUYVERS S, et al. III/V-on-lithium niobate amplifiers and lasers[J]. Optica, 2021, 8(10): 1288-1289. [51] CHEN Z X, XU Q, ZHANG K, et al. Efficient erbium-doped thin-film lithium niobate waveguide amplifiers[J]. Optics Letters, 2021, 46(5): 1161-1164. [52] LUO Q, YANG C, HAO Z Z, et al. On-chip erbium-doped lithium niobate waveguide amplifiers[J]. Chinese Optics Letters, 2021, 19(6): 060008. [53] ZHOU J X, LIANG Y T, LIU Z X, et al. On-chip integrated waveguide amplifiers on erbium-doped thin-film lithium niobate on insulator[J]. Laser & Photonics Reviews, 2021, 15(8): 2100030. [54] LIANG Y T, ZHOU J X, LIU Z X, et al. A high-gain cladded waveguide amplifier on erbium doped thin-film lithium niobate fabricated using photolithography assisted chemo-mechanical etching[J]. Nanophotonics, 2022, 11(5): 737. [55] BAO R, SONG L B, CHEN J M, et al. On-chip coherent beam combination of waveguide amplifiers on Er3+-doped thin film lithium niobate[J]. Optics Letters, 2023, 48(24): 6348-6351. [56] YAN X S, LIU Y A, WU J W, et al. Integrated spiral waveguide amplifiers on erbium-doped thin-film lithium niobate[EB/OL]. 2021: arXiv: 2105.00214. http://arxiv.org/abs/2105.00214.pdf [57] SHAMS-ANSARI A, RENAUD D, CHENG R, et al. Electrically pumped laser transmitter integrated on thin-film lithium niobate[J]. Optica, 2022, 9(4): 408-411. [58] ZHANG X, LIU X Y, MA R, et al. Heterogeneously integrated III-V-on-lithium niobate broadband light sources and photodetectors[J]. Optics Letters, 2022, 47(17): 4564-4567. [59] SNIGIREV V, RIEDHAUSER A, LIHACHEV G, et al. Ultrafast tunable lasers using lithium niobate integrated photonics[J]. Nature, 2023, 615: 411-417. [60] LI M X, CHANG L, WU L, et al. Integrated Pockels laser[J]. Nature Communications, 2022, 13: 5344. [61] YU M J, BARTON III D, CHENG R, et al. Integrated femtosecond pulse generator on thin-film lithium niobate[J]. Nature, 2022, 612: 252-258. [62] GUO Q, GUTIERREZ B, SEKINE R, et al. Ultrafast mode-locked laser in nanophotonic lithium niobate[J]. Science, 382: 708-713. [63] DESIATOV B, LONVCAR M. Silicon photodetector for integrated lithium niobate photonics[J]. Applied Physics Letters, 2019, 115(12): 121108. [64] GUAN H Y, HONG J Y, WANG X L, et al. Broadband, high-sensitivity graphene photodetector based on ferroelectric polarization of lithium niobate[J]. Advanced Optical Materials, 2021, 9(16): 2100245. [65] SUN X L, SHENG Y, GAO X, et al. Self-powered lithium niobate thin-film photodetectors[J]. Small, 2022, 18(35): e2203532. [66] PKER J P, BARTNICK M, MEYER-SCOTT E, et al. Towards integrated superconducting detectors on lithium niobate waveguides[C]//SPIE Nanoscience + Engineering. Proc SPIE 10358, Quantum Photonic Devices, San Diego, California, USA. 2017, 10358: 21-27. [67] ZHU S, ZHANG Y W, FENG J X, et al. Integrated lithium niobate photonic millimeter-wave radar[EB/OL]. 2023: arXiv: 2311.09857. http://arxiv.org/abs/2311.09857.pdf [68] 高博锋, 任梦昕, 郑大怀, 等. 铌酸锂的耄耋之路[J]. 人工晶体学报, 2021, 50(7): 1183-1199. GAO B F, REN M X, ZHENG D H, et al. Long-lived lithium niobate: history and progress[J]. Journal of Synthetic Crystals, 2021, 50(7): 1183-1199 (in Chinese). [69] 孙 军, 郝永鑫, 张 玲, 等. 铌酸锂晶体及其应用概述[J]. 人工晶体学报, 2020, 49(6): 947-964. SUN J, HAO Y X, ZHANG L, et al. Brief review of lithium niobate crystal and its applications[J]. Journal of Synthetic Crystals, 2020, 49(6): 947-964 (in Chinese). [70] ZACHARIASEN W H. Untersuchungen über die Kristallstrukturen von Sesquioxiden und Verbindungen ABO3[J]. Geologiska Föreningen i Stockholm Förhandlingar, 1929, 51(1): 123. [71] SRINIVASAN N R. Studies on niobium and tantalum[J]. Proceedings of the Indian Academy of Sciences - Section A, 1952, 36(3): 185. [72] SÁNCHEZ-DENA O, FIERRO-RUIZ C D, VILLALOBOS-MENDOZA S D, et al. Lithium niobate single crystals and powders reviewed—part I[J]. Crystals, 2020, 10(11): 973. [73] MATTHIAS B T, REMEIKA J P. Ferroelectricity in the ilmenite structure[J]. Physical Review, 1949, 76(12): 1886-1887. [74] BALLMAN A A. Growth of piezoelectric and ferroelectric materials by the CzochraIski technique[J]. Journal of the American Ceramic Society, 1965, 48(2): 112-113. [75] FEDULOV S, SHAPIRO I, LADYZHENSKI P. Application of Czochralski method for growth of LiNbO3, LiTaO3, and NaNbO3 single crystals[J]. Kristallografiya, 1965, 10(2): 268-269. [76] WARNER J, ROBERTSON D S, HULME K F. The temperature dependence of optical birefringence in lithium niobate[J]. Physics Letters, 1966, 20(2): 163-164. [77] PETERSON G E, BALLMAN A A, LENZO P V, et al. Electro-optic properties of LiNbO3[J]. Applied Physics Letters, 1964, 5(3): 62-64. [78] LENZO P V, SPENCER E G, NASSAU K. Electro-optic coefficients in single-domain ferroelectric lithium niobate[J]. JOSA, 1966, 56(5): 633-635. [79] TURNER E H. High-frequency electro-optic coefficients of lithium niobate[J]. Applied Physics Letters, 1966, 8(11): 303-304. [80] KAMINOW I P, SHARPLESS W M. Performance of LiTaO3 and LiNbO3 light modulators at 4 GHz[J]. Applied Optics, 1967, 6(2): 351-352. [81] MILLER R C, BOYD G D, SAVAGE A. Nonlinear optical interactions in LiNbO3 without double refraction[J]. Applied Physics Letters, 1965, 6(4): 77-79. [82] GIORDMAINE J A, MILLER R C. Tunable coherent parametric oscillation in LiNbO3 at optical frequencies[J]. Physical Review Letters, 1965, 14(24): 973-976. [83] GIORDMAINE J A, MILLER R C. Optical parametric oscillation in the visible spectrum[J]. Applied Physics Letters, 1966, 9(8): 298-300. [84] WARNER A. New piezoelectric materials[C]//19th Annual Symposium on Frequency Control. Atlantic City, NJ, USA. IEEE, 1965: 5-21. [85] NASSAU K, LEVINSTEIN H J, LOIACONO G M. The domain structure and etching of ferroelectric lithium niobate[J]. Applied Physics Letters, 1965, 6(11): 228-229. [86] NASSAU K, LEVINSTEIN H J. Ferroelectric behavior of lithium niobate[J]. Applied Physics Letters, 1965, 7(3): 69-70. [87] KAMINOW I P, CARRUTHERS J R. Optical waveguiding layers in LiNbO3 and LiTaO3[J]. Applied Physics Letters, 1973, 22(7): 326-328. [88] OHMACHI Y, NODA J. Electro-optic light modulator with branched ridge waveguide[J]. Applied Physics Letters, 1975, 27(10): 544-546. [89] JACKEL J L, RICE C E, VESELKA J J. Proton exchange for high-index waveguides in LiNbO3[J]. Applied Physics Letters, 1982, 41(7): 607-608. [90] FENG D, MING N B, HONG J F, et al. Enhancement of second-harmonic generation in LiNbO3 crystals with periodic laminar ferroelectric domains[J]. Applied Physics Letters, 1980, 37(7): 607. [91] ARMSTRONG J A, BLOEMBERGEN N, DUCUING J, et al. Interactions between light waves in a nonlinear dielectric[J]. Physical Review, 1962, 127(6): 1918-1939. [92] ZHONG G, JIN J, WU Z. Measurements of optically induced refractive-index damage of lithium niobate doped with different concentrations of MgO[J]. Journal of the Optical Society of America, 1980, 70(6): 631. [93] KONG Y F, LIU S G, XU J J. Recent advances in the photorefraction of doped lithium niobate crystals[J]. Materials, 2012, 5(10): 1954-1971. [94] ZHANG G Q, SONG D H, LIU Z B, et al. 1. Recent progresses on weak-light nonlinear optics[M]//Advances in Nonlinear Optics: DE GRUYTER, 2015: 1-104. [95] 刘思敏, 郭 儒, 许京军. 光折变非线性光学及其应用[M]. 北京: 科学出版社, 2004. LIU S M, GUO R, XU J J. Photorefractive nonlinear optics and its applications[M]. Beijing: Science Press, 2004 (in Chinese). [96] ZHANG G Q, BO F, DONG R, et al. Phase-coupling-induced ultraslow light propagation in solids at room temperature[J]. Physical Review Letters, 2004, 93(13): 133903. [97] CHEN Z G, MARTIN H, EUGENIEVA E D, et al. Anisotropic enhancement of discrete diffraction and formation of two-dimensional discrete-soliton trains[J]. Physical Review Letters, 2004, 92(14): 143902. [98] QIAO H J, XU J J, ZHANG G Q, et al. Ultraviolet photorefractivity features in doped lithium niobate crystals[J]. Physical Review B, 2004, 70(9): 094101. [99] KONG Y F, BO F, WANG W W, et al. Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices[J]. Advanced Materials, 2020, 32(3): e1806452. [100] WANG S L, SHAN Y D, ZHENG D H, et al. The real-time dynamic holographic display of LN∶Bi, Mg crystals and defect-related electron mobility[J]. Opto-Electronic Advances, 2022, 5(12): 210135. [101] JIN H, LIU F M, XU P, et al. On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits[J]. Physical Review Letters, 2014, 113(10): 103601. [102] LEVY M, OSGOOD R M, LIU R, et al. Fabrication of single-crystal lithium niobate films by crystal ion slicing[J]. Applied Physics Letters, 1998, 73(16): 2293. [103] RABIEI P, GUNTER P. Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding[J]. Applied Physics Letters, 2004, 85(20): 4603. [104] RABIEI P, GUNTER P. Sub-micron thin films of lithium niobate single crystals prepared by crystal ion slicing and wafer bonding[C]//Conference on Lasers and Electro-Optics. Baltimore, MD, USA. IEEE, 2005: 235-237. [105] SZAFRANIAK I, RADU I, SCHOLZ R, et al. Single-crystalline ferroelectric thin films by ion implantation and direct wafer bonding[J]. Integrated Ferroelectrics, 2003, 55(1): 983-990. [106] SOLAL M, PASTUREAUD T, BALLANDRAS S, et al. Oriented lithium niobate layers transferred on 4"[100]silicon wafer for RF SAW devices[C]//2002 IEEE Ultrasonics Symposium, 2002. Proceedings. Munich, Germany. IEEE, 2002: 131-134. [107] RABIEI P, GUNTER P. Smart guide: lithium niobate large index contrast waveguides fabricated by crystal ion slicing and wafer bonding[C]//Integrated Optoelectronic Devices 2005. Proc SPIE 5728, Integrated Optics: Devices, Materials, and Technologies IX, San Jose, California, USA. 2005, 5728: 291-298. [108] PIJOLAT M, REINHARDT A, DEFAY E, et al. Large Qxf product for HBAR using Smart CutTM transfer of LiNbO3 thin layers onto LiNbO3 substrate[C]//2008 IEEE Ultrasonics Symposium. Beijing, China. IEEE, 2008: 201-204. [109] HU H, RICKEN R, SOHLER W. High refractive index contrast ridge waveguides in LiNbO3 thin films[C]//CLEO/Europe-EQEC 2009-European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference. Munich, Germany. IEEE, 2009: 1. [110] HU H, RICKEN R, SOHLER W. Lithium niobate photonic wires[J]. Optics Express, 2009, 17(26): 24261-24268. [111] HU H, RICKEN R, SOHLER W. Large area, crystal-bonded LiNbO3 thin films and ridge waveguides of high refractive index contrast[C]. Photorefractive Materials, Effects, and Devices-Control of Light and Matter, Bad Honnef, Germany: 2009. [112] WU C, HORNG R, WUU D, et al. Thinning technology for lithium niobate wafer by surface activated bonding and chemical mechanical polishing[J]. Japanese Journal of Applied Physics, 2006, 45(4B): 3822. [113] RABIEI P, STEIER W H. Lithium niobate ridge waveguides and modulators fabricated using smart guide[J]. Applied Physics Letters, 2005, 86(16): 161115. [114] GUARINO A, POBERAJ G, REZZONICO D, et al. Electro-optically tunable microring resonators in lithium niobate[J]. Nature Photonics, 2007, 1: 407-410. [115] POBERAJ G, KOECHLIN M, SULSER F, et al. Ion-sliced lithium niobate thin films for active photonic devices[J]. Optical Materials, 2009, 31(7): 1054-1058. [116] KOECHLIN M, POBERAJ G, GÜNTER P. High-resolution laser lithography system based on two-dimensional acousto-optic deflection[J]. The Review of Scientific Instruments, 2009, 80(8): 085105. [117] POBERAJ G, KOECHLIN M, SULSER F, et al. High-density integrated optics in ion-sliced lithium niobate thin films[C]//SPIE OPTO. Proc SPIE 7604, Integrated Optics: Devices, Materials, and Technologies XIV, San Francisco, California, USA. 2010, 7604: 195-203. [118] LIN J T, XU Y X, FANG Z W, et al. Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining[J]. Scientific Reports, 2015, 5: 8072. [119] LIN J T, XU Y X, FANG Z W, et al. Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining[EB/OL]. 2014: arXiv: 1405.6473. http://arxiv.org/abs/1405.6473.pdf [120] ZHANG M, WANG C, CHENG R, et al. Monolithic ultra-high-Q lithium niobate microring resonator[J]. Optica, 2017, 4(12): 1536. [121] ZHU D, SHAO L B, YU M J, et al. Integrated photonics on thin-film lithium niobate[J]. Advances in Optics and Photonics, 2021, 13(2): 242-352. [122] WANG C, ZHANG M, STERN B, et al. Nanophotonic lithium niobate electro-optic modulators[J]. Optics Express, 2018, 26(2): 1547-1555. [123] WANG J, BO F, WAN S, et al. High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation[J]. Optics Express, 2015, 23(18): 23072-23078. [124] WOLF R, BREUNIG I, ZAPPE H, et al. Cascaded second-order optical nonlinearities in on-chip micro rings[J]. Optics Express, 2017, 25(24): 29927-29933. [125] WOLF R, BREUNIG I, ZAPPE H, et al. Scattering-loss reduction of ridge waveguides by sidewall polishing[J]. Optics Express, 2018, 26(16): 19815-19820. [126] LUKE K, KHAREL P, REIMER C, et al. Wafer-scale low-loss lithium niobate photonic integrated circuits[J]. Optics Express, 2020, 28(17): 24452-24458. [127] WANG H Y, XU Y, LI Z Y, et al. Thin-film lithium niobate photonic devices on 8-inch silicon substrates[C]//2023 Optical Fiber Communications Conference and Exhibition (OFC). San Diego, CA, USA. IEEE, 2023: 1-3. [128] ZHANG J H, FANG Z W, LIN J T, et al. Fabrication of crystalline microresonators of high quality factors with a controllable wedge angle on lithium niobate on insulator[J]. Nanomaterials, 2019, 9(9): 1218. [129] WU R B, WANG M, XU J, et al. Long low-loss-litium niobate on insulator waveguides with sub-nanometer surface roughness[J]. Nanomaterials, 2018, 8(11): 910. [130] GAO R H, ZHANG H S, BO F, et al. Broadband highly efficient nonlinear optical processes in on-chip integrated lithium niobate microdisk resonators of Q-factor above 108[J]. New Journal of Physics, 2021, 23(12): 123027. [131] GAO R H, YAO N, GUAN J L, et al. Lithium niobate microring with ultra-high Q factor above 108[J]. Chinese Optics Letters, 2022, 20(1): 011902. [132] LI C T, GUAN J L, LIN J T, et al. Ultra-high Q lithium niobate microring monolithically fabricated by photolithography assisted chemo-mechanical etching[J]. Optics Express, 2023, 31(19): 31556-31562. [133] CHEN J M, LIU Z X, SONG L B, et al. Ultra-high-speed high-resolution laser lithography for lithium niobate integrated photonics[C]//SPIE LASE. Proc SPIE 12411, Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial Applications XXIII, San Francisco, California, USA. 2023, 12411: 41-50. [134] TAKIGAWA R, HIGURASHI E, KAWANISHI T, et al. Lithium niobate ridged waveguides with smooth vertical sidewalls fabricated by an ultra-precision cutting method[J]. Optics Express, 2014, 22(22): 27733-27738. [135] TAKIGAWA R, KAMIMURA K, ASAMI K, et al. Fabrication of a bonded LNOI waveguide structure on Si substrate using ultra-precision cutting[J]. Japanese Journal of Applied Physics, 2020, 59: SBBD03. [136] LI G Z, CHEN Y P, JIANG H W, et al. Broadband sum-frequency generation using d33 in periodically poled LiNbO3 thin film in the telecommunications band[J]. Optics Letters, 2017, 42(5): 939-942. [137] NISHIKAWA T, OZAWA A, NISHIDA Y, et al. Efficient 494 mW sum-frequency generation of sodium resonance radiation at 589 nm by using a periodically poled Zn∶LiNbO3 ridge waveguide[J]. Optics Express, 2009, 17(20): 17792-17800. [138] SUN J, GAN Y, XU C Q. Efficient green-light generation by proton-exchanged periodically poled MgO∶LiNbO3 ridge waveguide[J]. Optics Letters, 2011, 36(4): 549-551. [139] VOLK M F, SUNTSOV S, RÜTER C E, et al. Low loss ridge waveguides in lithium niobate thin films by optical grade diamond blade dicing[J]. Optics Express, 2016, 24(2): 1386-1391. [140] HENDRY I, TRAINOR L S, XU Y Q, et al. Experimental observation of internally pumped parametric oscillation and quadratic comb generation in a χ(2) whispering-gallery-mode microresonator[J]. Optics Letters, 2020, 45(5): 1204-1207. [141] ILCHENKO V S, SAVCHENKOV A A, MATSKO A B, et al. Nonlinear optics and crystalline whispering gallery mode cavities[J]. Physical Review Letters, 2004, 92(4): 043903. [142] CHEN G Y, LI N X, DA NG J, et al. Advances in lithium niobate photonics: development status and perspectives[J]. Advanced Photonics, 2022, 4: 034003. [143] RABIEI P, MA J C, KHAN S, et al. Heterogeneous lithium niobate photonics on silicon substrates[J]. Optics Express, 2013, 21(21): 25573-25581. [144] CHANG L, LI Y F, VOLET N, et al. Thin film wavelength converters for photonic integrated circuits[J]. Optica, 2016, 3(5): 531. [145] SOLMAZ M E, ADAMS D B, TAN W C, et al. Vertically integrated As2S3 ring resonator on LiNbO3[J]. Optics Letters, 2009, 34(11): 1735-1737. [146] CAO L, ABOKETAF A, WANG Z, et al. Hybrid amorphous silicon (a-Si∶H)-LiNbO3 electro-optic modulator[J]. Optics Communications, 2014, 330(1): 40-44. [147] BO F, WANG J, CUI J, et al. Lithium-niobate-silica hybrid whispering-gallery-mode resonators[J]. Advanced Materials, 2015, 27(48): 8075-8081. [148] LI S, CAI L T, WANG Y W, et al. Waveguides consisting of single-crystal lithium niobate thin film and oxidized titanium stripe[J]. Optics Express, 2015, 23(19): 24212-24219. [149] RAO A, PATIL A, RABIEI P, et al. High-performance and linear thin-film lithium niobate Mach-Zehnder modulators on silicon up to 50 GHz[J]. Optics Letters, 2016, 41(24): 5700-5703. [150] HAN X, JIANG Y H, FRIGG A, et al. Mode and polarization-division multiplexing based on silicon nitride loaded lithium niobate on insulator platform[J]. Laser & Photonics Reviews, 2022, 16(1): 2100529. [151] ZHANG X T, HE L Y, GAN X, et al. Quasi-bound states in the continuum enhanced second-harmonic generation in thin-film lithium niobate[J]. Laser & Photonics Reviews, 2022, 16(9): 2200031. [152] YU Z J, TONG Y Y, TSANG H K, et al. High-dimensional communication on etchless lithium niobate platform with photonic bound states in the continuum[J]. Nature Communications, 2020, 11: 2602. [153] YU Z J, XI X, MA J W, et al. Photonic integrated circuits with bound states in the continuum[J]. Optica, 2019, 6(10): 1342. [154] YU Y, YU Z J, WANG L, et al. Ultralow-loss etchless lithium niobate integrated photonics at near-visible wavelengths[C]//2022 Conference on Lasers and Electro-Optics (CLEO). San Jose, CA, USA. IEEE, 2022: 1-2. [155] XIE Z, BO F, LIN J, et al. Recent development in integrated lithium niobate photonics[J]. Advances in Physics: X: under peer review. [156] GE L C, JIANG H W, LIU Y A, et al. Quality improvement and mode evolution of high-Q lithium niobate micro-disk induced by “light annealing”[J]. Optical Materials Express, 2019, 9(4): 1632. [157] ZHUANG R J, HE J Z, QI Y F, et al. High-Q thin-film lithium niobate microrings fabricated with wet etching[J]. Advanced Materials, 2023, 35(3): e2208113. [158] LIN J T, ZHOU J X, WU R B, et al. High-precision propagation-loss measurement of single-mode optical waveguides on lithium niobate on insulator[J]. Micromachines, 2019, 10(9): 612. [159] PAN B C, HU J Y, HUANG Y S, et al. Demonstration of high-speed thin-film lithium-niobate-on-insulator optical modulators at the 2-μm wavelength[J]. Optics Express, 2021, 29(12): 17710-17717. [160] WU R B, LIN J T, WANG M, et al. Fabrication of a multifunctional photonic integrated chip on lithium niobate on insulator using femtosecond laser-assisted chemomechanical polish[J]. Optics Letters, 2019, 44(19): 4698-4701. [161] LUO H Z, CHEN Z Y, LI H, et al. High-performance polarization splitter-rotator based on lithium niobate-on-insulator platform[J]. IEEE Photonics Technology Letters, 2021, 33(24): 1423-1426. [162] WANG X H, PAN A, LI T A, et al. Efficient polarization splitter-rotator on thin-film lithium niobate[J]. Optics Express, 2021, 29(23): 38044-38052. [163] SHEN Y, RUAN Z L, CHEN K X, et al. Broadband polarization splitter-rotator on a thin-film lithium niobate with conversion-enhanced adiabatic tapers[J]. Optics Express, 2023, 31(2): 1354-1366. [164] CHEN Z X, YANG J W, WONG W H, et al. Broadband adiabatic polarization rotator-splitter based on a lithium niobate on insulator platform[J]. Photonics Research, 2021, 9(12): 2319-2324. [165] LIN Z J, LIN Y M, LI H, et al. High-performance polarization management devices based on thin-film lithium niobate[J]. Light: Science & Applications, 2022, 11: 93. [166] ZHENG Y L, CHEN X F. Nonlinear wave mixing in lithium niobate thin film[J]. Advances in Physics X, 2021, 6(1): 1889402. [167] VAZIMALI M G, FATHPOUR S. Applications of thin-film lithium niobate in nonlinear integrated photonics[J]. Advanced Photonics, 2022, 4: 034001. [168] WANG Z J, WANG C H, YU H K. Advances in nonlinear photonic devices based on lithium niobate waveguides[J]. Journal of Physics D Applied Physics, 2023, 56(8): 083001. [169] YU H K, LUN Y P, LIN J T, et al. Frequency-resolved optical gating in transverse geometry for on-chip optical pulse diagnostics[J]. Laser & Photonics Reviews, 2023, 17(12): 2201017. [170] VAHALA K J. Optical microcavities[J]. Nature, 2003, 424: 839-846. [171] GE R, YAN X S, LIANG Z K, et al. Large quality factor enhancement based on cascaded uniform lithium niobate bichromatic photonic crystal cavities[J]. Optics Letters, 2023, 48(1): 113-116. [172] LI M X, LING J W, HE Y, et al. Lithium niobate photonic-crystal electro-optic modulator[J]. Nature Communications, 2020, 11: 4123. [173] XIE R R, LI G Q, CHEN F, et al. Microresonators in lithium niobate thin films[J]. Advanced Optical Materials, 2021, 9(19): 2100539. [174] SONG Q H, GE L, STONE A D, et al. Directional laser emission from a wavelength-scale chaotic microcavity[J]. Physical Review Letters, 2010, 105(10): 103902. [175] WIERSIG J, HENTSCHEL M. Combining directional light output and ultralow loss in deformed microdisks[J]. Physical Review Letters, 2008, 100(3): 033901. [176] WANG L, WANG C, WANG J, et al. High-Q chaotic lithium niobate microdisk cavity[J]. Optics Letters, 2018, 43(12): 2917-2920. [177] GAO A, YANG C, CHEN L K, et al. Directional emission in X-cut lithium niobate microresonators without chaos dynamics[J]. Photonics Research, 2022, 10(2): 401-406. [178] YANG Y H, XU X B, WANG J Q, et al. Nonlinear optical radiation of a lithium niobate microcavity[J]. Physical Review Applied, 2023, 19(3): 034087. [179] FANG Z W, HAQUE S, FARAJOLLAHI S, et al. Polygon coherent modes in a weakly perturbed whispering gallery microresonator for efficient second harmonic, optomechanical, and frequency comb generations[J]. Physical Review Letters, 2020, 125(17): 173901. [180] FU B T, GAO R H, LIN J T, et al. Modes trimming and clustering in a weakly perturbed high-Q whispering gallery microresonator[J]. Laser & Photonics Reviews, 2023, 17(11): 2300116. [181] FARAJOLLAHI S, FANG Z W, LIN J T, et al. Multimode perturbation modeling for cavity polygon and star modes[J]. Physical Review A, 2023, 108(3): 033520. [182] 熊 霄, 曹启韬, 肖云峰. 铌酸锂集成光子器件的发展与机遇[J]. 物理学报, 2023, 72: 234201. XIONG X, CAO Q T, XIAO Y F. Thin-film lithium niobate photonic integrated devices: advances and oppotunities[J]. Acta Physica Sinica, 2023, 72: 234201 (in Chinese). [183] 李庚霖, 贾曰辰, 陈 峰. 绝缘体上铌酸锂薄膜片上光子学器件的研究进展[J]. 物理学报, 2020, 69: 157801. LI G L, JIA Y C, CHEN F. Research progress of photonics devices on lithium-niobate-on-insulator thin films[J]. Acta Physica Sinica, 2020, 69: 157801 (in Chinese). [184] 汪 旻, 乔玲玲, 方致伟, 等. 基于超快激光光刻的有源铌酸锂光子集成[J]. 光学学报, 2023, 43: 1623014. WANG M, QIAO L L, FANG Z W, et al. Active lithium niobate photonic integration based on ultrafast laser lithography[J]. Acta Optica Sinica, 2023, 43: 1623014 (in Chinese). [185] 田晓慧, 尚鸣昊, 祝世宁, 等. 铌酸锂基光量子器件与集成技术:机遇与挑战[J]. 物理, 2023, 52: 534-541. TIAN X H, SHANG M H, ZHU S N, et al. Lithium niobate based photonic quantum devices and integration technology: opportunities and challenges[J]. Physics, 2023, 52: 534-541 (in Chinese). [186] CHENG J, GAO D S, DONG J J, et al. Ultra-efficient second harmonic generation via mode phase matching in integrated lithium niobate racetrack resonators[J]. Optics Express, 2023, 31(22): 36736-36744. [187] LIN J T, XU Y X, FANG Z W, et al. Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining[J]. Science China Physics, Mechanics & Astronomy, 2015, 58(11): 114209. [188] LIN J T, XU Y X, NI J L, et al. Phase-matched second-harmonic generation in an on-chip LiNbO3 microresonator[J]. Physical Review Applied, 2016, 6(1): 014002. [189] HAO Z Z, ZHANG L, MAO W B, et al. Second-harmonic generation using d33 in periodically poled lithium niobate microdisk resonators[J]. Photonics Research, 2020, 8(3): 311. [190] LU J J, SURYA J B, LIU X W, et al. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250, 000%/W[J]. Optica, 2019, 6(12): 1455. [191] CHEN J Y, TANG C, JIN M W, et al. Efficient frequency doubling with active stabilization on chip[J]. Laser & Photonics Reviews, 2021, 15(11): 2100091. [192] ZHANG L, WU X, HAO Z Z, et al. Second-harmonic and cascaded third-harmonic generation in generalized quasiperiodic poled lithium niobate waveguides[J]. Optics Letters, 2023, 48(7): 1906-1909. [193] YUAN T G, WU J W, LIU Y A, et al. Chip-scale spontaneous quasi-phase matched second harmonic generation in a micro-racetrack resonator[J]. Science China Physics, Mechanics & Astronomy, 2023, 66(8): 284211. [194] WU X, HAO Z Z, ZHANG L, et al. Second-harmonic generation with a 440, 000%·W-1 conversion efficiency in a lithium niobate microcavity without periodic poling[EB/OL]. 2023: arXiv: 2312.07024. http://arxiv.org/abs/2312.07024.pdf [195] DU H Y, ZHANG X Q, LV H Y, et al. High-efficiency second harmonic generation in a micro-resonator on dual-layered lithium niobate[J]. Optics Letters, 2024, 49(2): 391-394. [196] LU J J, AL SAYEM A, GONG Z, et al. Ultralow-threshold thin-film lithium niobate optical parametric oscillator[J]. Optica, 2021, 8(4): 539. [197] MA Z H, CHEN J Y, LI Z, et al. Ultrabright quantum photon sources on chip[J]. Physical Review Letters, 2020, 125(26): 263602. [198] LUO R, JIANG H W, ROGERS S, et al. On-chip second-harmonic generation and broadband parametric down-conversion in a lithium niobate microresonator[J]. Optics Express, 2017, 25(20): 24531-24539. [199] LIU H Y, SHANG M H, LIU X Y, et al. Deterministic N-photon state generation using lithium niobate on insulator device[J]. Advanced Photonics Nexus, 2022, 2(1): 016003. [200] HU H, BÜCHTER D, GUI L, et al. Lithium niobate photonic wires[C]//2010 23rd Annual Meeting of the IEEE Photonics Society. Denver, CO, USA. IEEE, 2010: 254-255. [201] RAO A, MALINOWSKI M, HONARDOOST A, et al. Second-harmonic generation in periodically-poled thin film lithium niobate wafer-bonded on silicon[J]. Optics Express, 2016, 24(26): 29941-29947. [202] WANG C, LANGROCK C, MARANDI A, et al. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides[J]. Optica, 2018, 5(11): 1438. [203] NIU Y F, LIN C, LIU X Y, et al. Optimizing the efficiency of a periodically poled LNOI waveguide using in situ monitoring of the ferroelectric domains[J]. Applied Physics Letters, 2020, 116(10): 101104. [204] WU X, ZHANG L, HAO Z Z, et al. Broadband second-harmonic generation in step-chirped periodically poled lithium niobate waveguides[J]. Optics Letters, 2022, 47(7): 1574-1577. [205] ZHANG Y T, LI H, DING T T, et al. Scalable, fiber-compatible lithium-niobate-on-insulator micro-waveguides for efficient nonlinear photonics[J]. Optica, 2023, 10(6): 688. [206] WANG L, ZHANG X Q, CHEN F. Efficient second harmonic generation in a reverse-polarization dual-layer crystalline thin film nanophotonic waveguide[J]. Laser & Photonics Reviews, 2021, 15(12): 2100409. [207] CHENG R, HUANG S, XU Q, et al. Research progress of lithium niobate waveguide and its application in quantum information technology[C]//2021 Photonics & Electromagnetics Research Symposium (PIERS). Hangzhou, China. IEEE, 2021: 877-896. [208] CHENG X, SARIHAN M C, CHANG K C, et al. Design of spontaneous parametric down-conversion in integrated hybrid SixNy-PPLN waveguides[J]. Optics Express, 2019, 27(21): 30773-30787. [209] KIPPENBERG T J, GAETA A L, LIPSON M, et al. Dissipative Kerr solitons in optical microresonators[J]. Science, 2018, 361(6402): eaan8083. [210] GONG Z, LI M, LIU X W, et al. Photonic dissipation control for Kerr soliton generation in strongly raman-active media[J]. Physical Review Letters, 2020, 125(18): 183901. [211] GONG Z, LIU X W, XU Y T, et al. Soliton microcomb generation at 2 μm in z-cut lithium niobate microring resonators[J]. Optics Letters, 2019, 44(12): 3182-3185. [212] HE Y, LOPEZ-RIOS R, YANG Q F, et al. Octave-spanning lithium niobate soliton microcombs[C]//2021 Conference on Lasers and Electro-Optics (CLEO). San Jose, CA, USA. IEEE, 2021: 1-2. [213] FU B T, GAO R H, YAO N, et al. Generation of Kerr soliton microcomb in a normally dispersed lithium niobate microdisk resonator by mode trimming[EB/OL]. 2023: arXiv: 2309.00778. http://arxiv.org/abs/2309.00778.pdf [214] ZHUANG R J, NI K, WU G H, et al. Electro-optic frequency combs: theory, characteristics, and applications[J]. Laser & Photonics Reviews, 2023, 17(6): 2200353. [215] ZHANG M, BUSCAINO B, WANG C, et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator[J]. Nature, 2019, 568: 373-377. [216] HU Y W, YU M J, BUSCAINO B, et al. High-efficiency and broadband on-chip electro-optic frequency comb generators[J]. Nature Photonics, 2022, 16: 679-685. [217] ZHANG K, SUN W Z, CHEN Y K, et al. A power-efficient integrated lithium niobate electro-optic comb generator[J]. Communications Physics, 2023, 6: 17. [218] KHAREL P, REIMER C, LUKE K, et al. Breaking voltage-bandwidth limits in integrated lithium niobate modulators using micro-structured electrodes[J]. Optica, 2021, 8(3): 357. [219] WU R B, GAO L, LIANG Y T, et al. High-production-rate fabrication of low-loss lithium niobate electro-optic modulators using photolithography assisted chemo-mechanical etching (PLACE)[J]. Micromachines, 2022, 13(3): 378. [220] XU M Y, ZHU Y T, PITTAL A F, et al. Dual-polarization thin-film lithium niobate in-phase quadrature modulators for terabit-per-second transmission[J]. Optica, 2022, 9(1): 61. [221] CHEN G X, WANG H H, CHEN B, et al. Compact slow-light waveguide and modulator on thin-film lithium niobate platform[J]. Nanophotonics, 2023, 12(18): 306. [222] PROST M, LIU G Y, BEN YOO S J. A compact thin-film lithium niobate platform with arrayed waveguide gratings and MMIs[C]//Optical Fiber Communication Conference. San Diego, California. Washington, D.C.: OSA, 2018. [223] LIU H X, PAN B C, HUANG Y S, et al. Ultra-compact lithium niobate photonic chip for high-capacity and energy-efficient wavelength-division-multiplexing transmitters[J]. Light: Advanced Manufacturing, 2023, 4(2): 13. [224] LIU Y A, YAN X S, WU J W, et al. On-chip erbium-doped lithium niobate microcavity laser[J]. Science China Physics, Mechanics & Astronomy, 2020, 64(3): 234262. [225] LUO Q, YANG C, ZHANG R, et al. On-chip erbium-doped lithium niobate microring lasers[J]. Optics Letters, 2021, 46(13): 3275-3278. [226] WANG Z, FANG Z W, LIU Z X, et al. On-chip tunable microdisk laser fabricated on Er3+-doped lithium niobate on insulator[J]. Optics Letters, 2021, 46(2): 380-383. [227] XIAO Z Y, WU K, CAI M L, et al. Single-frequency integrated laser on erbium-doped lithium niobate on insulator[J]. Optics Letters, 2021, 46(17): 4128. [228] LI M H, GAO R H, LI C T, et al. Erbium-ytterbium Co-doped lithium niobate single-mode microdisk laser with an ultralow threshold of 1 uW[EB/OL]. 2023: arXiv: 2309.10512. http://arxiv.org/abs/2309.10512.pdf [229] LUO Q, YANG C, HAO Z Z, et al. On-chip erbium-ytterbium-co-doped lithium niobate microdisk laser with an ultralow threshold[J]. Optics Letters, 2023, 48(13): 3447-3450. [230] GUAN J L, LI C T, GAO R H, et al. Monolithically integrated narrow-bandwidth disk laser on thin-film lithium niobate[J]. Optics Laser Technology, 2024, 168: 109908. [231] LI Z H, WANG R N, LIHACHEV G, et al. Tightly confining lithium niobate photonic integrated circuits and lasers[EB/OL]. 2022: arXiv: 2208.05556. http://arxiv.org/abs/2208.05556.pdf [232] LING J W, STAFFA J, WANG H M, et al. Self-injection locked frequency conversion laser[J]. Laser & Photonics Reviews, 2023, 17(5): 2200663. [233] YU M J, OKAWACHI Y, CHENG R, et al. Raman lasing and soliton mode-locking in lithium niobate microresonators[J]. Light: Science & Applications, 2020, 9: 9. [234] ZHAO Y J, LIU X Y, YVIND K, et al. Widely-tunable, multi-band Raman laser based on dispersion-managed thin-film lithium niobate microring resonators[J]. Communications Physics, 2023, 6: 350. [235] WANG M, YAO N, WU R B, et al. Strong nonlinear optics in on-chip coupled lithium niobate microdisk photonic molecules[J]. New Journal of Physics, 2020, 22(7): 073030. [236] ZHAO G H, LIN J T, FU B T, et al. Integrated multi-color Raman microlasers with ultra-low pump levels in single high-Q lithium niobate microdisks[EB/OL]. 2023: arXiv: 2312.10347. http://arxiv.org/abs/2312.10347.pdf [237] ZHOU Y, ZHU Y R, FANG Z W, et al. Monolithically integrated active passive waveguide array fabricated on thin film lithium niobate using a single continuous photolithography process[J]. Laser & Photonics Reviews, 2023, 17(4): 2200686. [238] ZHENG Y, ZHONG H Z, ZHANG H S, et al. Electro-optically programmable photonic circuits enabled by wafer-scale integration on thin-film lithium niobate[J]. Physical Review Research, 2023, 5(3): 033206. |
[1] | YE Zhilin, LI Shifeng, CUI Guoxin, YIN Zhijun, WANG Xuebin, ZHAO Gang, HU Xiaopeng, ZHU Shining. Fabrication and Characterization of Wafer-Scale Thin-Film Lithium Niobate Waveguides [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(3): 426-433. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||