[1] PSALTIS D, QUAKE S R, YANG C. Developing optofluidic technology through the fusion of microfluidics and optics[J]. Nature, 2006, 442: 381-386. [2] FENG W Q, UEDA E, LEVKIN P A. Droplet microarrays: from surface patterning to high-throughput applications[J]. Advanced Materials, 2018, 30(20): e1706111. [3] CHEN Z K, KHEIRI S, YOUNG E W K, et al. Trends in droplet microfluidics: from droplet generation to biomedical applications[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2022, 38(20): 6233-6248. [4] LI J, HA N S, LIU T Y, et al. Ionic-surfactant-mediated electro-dewetting for digital microfluidics[J]. Nature, 2019, 572: 507-510. [5] SUN Q Q, WANG D H, LI Y N, et al. Surface charge printing for programmed droplet transport[J]. Nature Materials, 2019, 18: 936-941. [6] LI W, TANG X, WANG L Q. Photopyroelectric microfluidics[J]. Science Advances, 2020, 6(38): eabc1693. [7] 孙 军, 郝永鑫, 张 玲, 等. 铌酸锂晶体及其应用概述[J]. 人工晶体学报, 2020, 49(6): 947-964. SUN J, HAO Y X, ZHANG L, et al. Brief review of lithium niobate crystal and its applications[J]. Journal of Synthetic Crystals, 2020, 49(6): 947-964 (in Chinese). [8] 孔勇发, 许京军, 张光寅, 等. 多功能光电材料: 铌酸锂晶体[M]. 北京: 科学出版社, 2005. KONG Y F, XU J J, ZHANG G Y, et al. Multi functional optoelectronic material: lithium niobate crystal[M]. Beijing: Science Press, 2005 (in Chinese). [9] 高博锋, 任梦昕, 郑大怀, 等. 铌酸锂的耄耋之路: 历史与若干进展[J]. 人工晶体学报, 2021, 50(7): 1183-1199. GAO B F, REN M X, ZHENG D H, et al. Long-lived lithium niobate: history and progress[J]. Journal of Synthetic Crystals, 2021, 50(7): 1183-1199 (in Chinese). [10] 张 雄, 高作轩, 高开放, 等. 铌酸锂基光伏微流体操控技术[J]. 人工晶体学报, 2021, 50(7): 1327-1339. ZHANG X, GAO Z X, GAO K F, et al. Photovoltaic microfluidic manipulation based on lithium niobate[J]. Journal of Synthetic Crystals, 2021, 50(7): 1327-1339 (in Chinese). [11] GAO K F, ZHANG X, ZAN Z T, et al. Visible-light-assisted condensation of ultrasonically atomized water vapor on LiNbO3∶Fe crystals[J]. Optics Express, 2019, 27(26): 37680-37694. [12] GAO Z X, MI Y H, WANG M T, et al. Hydrophobic-substrate based water-microdroplet manipulation through the long-range photovoltaic interaction from a distant LiNbO3∶Fe crystal[J]. Optics Express, 2021, 29(3): 3808-3824. [13] MI Y H, LIU X H, GAO Z X, et al. 3D photovoltaic router of water microdroplets aiming at free-space microfluidic transportation[J]. ACS Applied Materials & Interfaces, 2021, 13(37): 45018-45032. [14] MUÑOZ-CORTÉS E, PUERTO A, BLÁZQUEZ-CASTRO A, et al. Optoelectronic generation of bio-aqueous femto-droplets based on the bulk photovoltaic effect[J]. Optics Letters, 2020, 45(5): 1164-1167. [15] PUERTO A, BELLA J L, LÓPEZ-FERNÁNDEZ C, et al. Optoelectronic manipulation of bio-droplets containing cells or macromolecules by active ferroelectric platforms[J]. Biomedical Optics Express, 2021, 12(10): 6601-6613. [16] PUERTO A, MÉNDEZ A, ARIZMENDI L, et al. Optoelectronic manipulation, trapping, splitting, and merging of water droplets and aqueous biodroplets based on the bulk photovoltaic effect[J]. Physical Review Applied, 2020, 14(2): 024046. [17] WANG M T, GAO Z X, LIU X H, et al. Towards biochemical microreactor: nonlocal photovoltaic actuation of aqueous microdroplets in oil-infused PDMS channels based on LiNbO3∶Fe crystal[J]. Sensors and Actuators B: Chemical, 2021, 349: 130819. [18] ZHANG X, GAO K F, GAO Z X, et al. Photovoltaic splitting of water microdroplets on a y-cut LiNbO3∶Fe crystal coated with oil-infused hydrophobic insulating layers[J]. Optics Letters, 2020, 45(5): 1180-1183. [19] ZHANG X, MUGISHA E R, MI Y H, et al. Photovoltaic cycling to-and-fro actuation of a water-microdroplet for automatic repeatable solute acquisition on oil-infused hydrophobic LN∶Fe surface[J]. ACS Photonics, 2021, 8(2): 639-647. [20] LI F F, ZHANG X, GAO K F, et al. All-optical splitting of dielectric microdroplets by using a y-cut-LN-based anti-symmetrical sandwich structure[J]. Optics Express, 2019, 27(18): 25767-25776. [21] ARREGUI C, RAMIRO J B, ALCÁZAR A, et al. Optoelectronic tweezers under arbitrary illumination patterns: theoretical simulations and comparison to experiment[J]. Optics Express, 2014, 22(23): 29099-29110. [22] SCHMID S, HIEROLD C, BOISEN A. Modeling the Kelvin polarization force actuation of micro- and nanomechanical systems[J]. Journal of Applied Physics, 2010, 107(5): 054510. [23] ELELE E O, SHEN Y Y, PETTIT D R, et al. Detection of a dynamic cone-shaped meniscus on the surface of fluids in electric fields[J]. Physical Review Letters, 2015, 114(5): 054501. [24] DUFT D, ACHTZEHN T, MÜLLER R, et al. Coulomb fission: Rayleigh jets from levitated microdroplets[J]. Nature, 2003, 421(6919): 128. [25] POLITOVA N, TCHOLAKOVA S, DENKOV N D. Factors affecting the stability of water-oil-water emulsion films[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 522: 608-620. [26] NEUMAN K C, NAGY A. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy[J]. Nature Methods, 2008, 5: 491-505. [27] LIN L H, WANG M S, PENG X L, et al. Opto-thermoelectric nanotweezers[J]. Nature Photonics, 2018, 12: 195-201. |