[1] 吕反修. 金刚石膜制备与应用-上卷[M]. 北京: 科学出版社, 2014. LV F X. Preparation and application of diamond film-Volume 1[M]. Beijing: Science Press, 2014 (in Chinese). [2] 安晓明, 葛新岗, 刘晓晨, 等. 高功率CO2激光器CVD金刚石窗口制备研究[J]. 人工晶体学报, 2021, 50(6): 1010-1015. AN X M, GE X G, LIU X C, et al. Preparation of CVD diamond window for high power CO2 laser[J]. Journal of Synthetic Crystals, 2021, 50(6): 1010-1015 (in Chinese). [3] 张鹏伟, 宋 惠, 白慧萍, 等. 太赫兹行波管用金刚石输能窗研究进展[J/OL]. 材料导报, 2023: 1-19. (2023-08-01). https://kns.cnki.net/kcms/detail/50.1078.TB.20230801.1602.006.html. ZHANG P W, SONG H, BAI H P, et al. Research progress of diamond energy transmission window for terahertz traveling wave tube[J/OL]. Materials Reports, 2023: 1-19. (2023-08-01). https://kns.cnki.net/kcms/detail/50.1078.TB.20230801.1602.006.html (in Chinese). [4] 李成明, 任飞桐, 邵思武, 等. 化学气相沉积(CVD)金刚石研究现状和发展趋势[J]. 人工晶体学报, 2022, 51(5): 759-780. LI C M, REN F T, SHAO S W, et al. Progress of chemical vapor deposition (CVD) diamond[J]. Journal of Synthetic Crystals, 2022, 51(5): 759-780 (in Chinese). [5] 邢义强, 赵剑锟, 李蔚成, 等. 微型X射线管金刚石光学窗口性能的模拟研究[J]. 核技术, 2021, 44(4): 12-18. XING Y Q, ZHAO J K, LI W C, et al. Simulation study on the performance of micro X-ray tube with diamond optical window[J]. Nuclear Techniques, 2021, 44(4): 12-18 (in Chinese). [6] 朱瑞华. CVD金刚石自支撑膜的制备与热物理性能研究[D]. 北京: 北京科技大学, 2015. ZHU R H. Preparation and thermophysical characteristics of self-standing diamond films[D].Beijing: University of Science and Technology Beijing, 2015 (in Chinese). [7] HO H P, LO K C, TJONG S C, et al. Measurement of thermal conductivity in diamond films using a simple scanning thermocouple technique[J]. Diamond and Related Materials, 2000, 9(7): 1312-1319. [8] SUKHADOLAU A V, IVAKIN E V, RALCHENKO V G, et al. Thermal conductivity of CVD diamond at elevated temperatures[J]. Diamond and Related Materials, 2005, 14(3/4/5/6/7): 589-593. [9] 叶祉渊. 光热偏转谱理论、仪器和应用[D]. 合肥: 中国科学技术大学, 1999. YE Z Y. Theory, instrument and application of photothermal deflection spectrum[D].Hefei: University of Science and Technology of China, 1999 (in Chinese). [10] 陈良辰, 程月英, 杨奕娟. 人造多晶金刚石的电阻率和热导率的测试[J]. 人工晶体, 1985, 14(2): 129-131. CHEN L C, CHENG Y Y, YANG Y J. Measurements of electric resistivity and thermal conductivity of synthetic polycrystalline diamond[J]. Journal of Synthetic Crystals, 1985, 14(2): 129-131 (in Chinese). [11] TWITCHEN D J, PICKLES C S J, COE S E, et al. Thermal conductivity measurements on CVD diamond[J]. Diamond and Related Materials, 2001, 10(3/4/5/6/7): 731-735. [12] 宫尚宝. LFA激光导热仪的测试原理与误差分析[J]. 安徽冶金, 2007(3): 27-28. GONG S B. Test principle and error analysis of LFA laser flash apparatus[J]. Anhui Metallurgy, 2007(3): 27-28 (in Chinese). [13] TROITSKY O Y, REISS H. A numerical simulation to propose a flash method for in situ detection of the thermal diffusivity of anisotropic thin film materials[J]. International Journal of Thermophysics, 2009, 30(4): 1283-1299. [14] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 闪光法测量热扩散系数或导热系数: GB/T 22588—2008[S]. 北京: 中国标准出版社, 2009. State Administration of Quality Supervision, Inspection and Quarantine, Standardization Administration of China. Determination of thermal diffusivity or thermal conductivity by the flash method: GB/T 22588—2008[S]. Beijing: Standards Press of China, 2009 (in Chinese). [15] 张振威, 蒋 锐, 朱宇瑾, 等. 基于激光闪射法测量Zr基非晶合金的导热系数[J]. 中国材料进展, 2023, 42(2): 181-184. ZHANG Z W, JIANG R, ZHU Y J, et al. Measurement of thermal conductivity of Zr-BasedBulk metallic glass by laser flash method[J]. Materials China, 2023, 42(2): 181-184 (in Chinese). [16] 刘 黎, 周旺枝, 张洪雷. 激光法测量材料热物理性能的原理及方法[J]. 武钢技术, 2013, 51(3): 9-12. LIU L, ZHOU W Z, ZHANG H L. Test principle and measuring procedure for thermo physical properties of materials by laser flash method[J]. Wuhan Iron and Steel Corporation Technology, 2013, 51(3): 9-12 (in Chinese). [17] PARKER W J, JENKINS R J, BUTLER C P, et al. Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity[J]. Journal of Applied Physics, 1961, 32(9): 1679-1684. [18] DONALDSON A B. Two-dimensional thermal attenuation of a laser pulse in a solid[J]. Journal of the Franklin Institute, 1972, 294(4): 275-281. |