[1] LU Q, WANG M, ZHANG H, et al. Microstructure and improved coercivity of Mn1.33Ga nanoflakes by surfactant-assisted ball milling[C]//2015 IEEE International Magnetics Conference (INTERMAG). May 11-15, 2015, Beijing, China. IEEE, 2015: 1. [2] FENG W W, VAN THIET D, DUNG D D, et al. Substrate-modified ferrimagnetism in MnGa films[J]. Journal of Applied Physics, 2010, 108(11): 113903. [3] ZHU L J, NIE S H, MENG K K, et al. Multifunctional L10-Mn1.5Ga films with ultrahigh coercivity, giant perpendicular magnetocrystalline anisotropy and large magnetic energy product[J]. Advanced Materials, 2012, 24(33): 4547-4551. [4] HUH Y, KHAREL P, SHAH V R, et al. Magnetism and electron transport of MnyGa (1<y<2) nanostructures[J]. Journal of Applied Physics, 2013, 114(1): 013906. [5] WEI J Z, WU R, YANG Y B, et al. Structural properties and large coercivity of bulk Mn3-xGa (0≤x≤1.15)[J]. Journal of Applied Physics, 2014, 115(17): 17A736. [6] LU Q M, YUE M, ZHANG H G, et al. Intrinsic magnetic properties of single-phase Mn1+xGa (0<x<1) alloys[J]. Scientific Reports, 2015, 5: 17086. [7] PAYNE M C, TETER M P, ALLAN D C, et al. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients[J]. Reviews of Modern Physics, 1992, 64(4): 1045-1097. [8] ZHANG G L, LU Q M, ZHANG F P, et al. Study on formation, electronic states evolution and spin polarization transition for MnGa compound under an anisotropic stress[J]. Physica B: Condensed Matter, 2022, 639: 414007. [9] ZHANG F P, SUN Y, WANG H H, et al. Regulated microarchitecture, spin polarization state, and observed charge transfers for cerium boride CeB6 under electrical field[J]. Materials Today Communications, 2021, 26: 101877. [10] ZHANG F P, SUN Y, ZHANG G L, et al. Stress-driven evolution on mismatched Ca2Co2O5 oxide material: from geometry to the electronic states[J]. Advances in Condensed Matter Physics, 2021, 2021: 5538056. [11] LU Q M, YU F, YUE M, et al. Phase structure and magnetic properties of Mn3Ga2 alloy[J]. Journal of Applied Physics, 2014, 115(17): 17A745. [12] ZHAO H, YANG W Y, SHAO Z Y, et al. Structural evolution, site ordering and magnetic properties of tetragonal Mn6-yGa2+y (0≤y≤1.64)[J]. Scripta Materialia, 2017, 129: 6-10. [13] CUI B Z, MARINESCU M, LIU J F. Ferromagnetic tetragonal L10-type MnGa isotropic nanocrystalline microparticles[J]. IEEE Transactions on Magnetics, 2013, 49(7): 3322-3325. [14] KHAREL P, HUH Y, AL-AQTASH N, et al. Structural and magnetic transitions in cubic Mn3Ga[J]. Journal of Physics: Condensed Matter, 2014, 26(12): 126001. [15] SAITO T, NISHIMURA R. Hard magnetic properties of Mn-Ga melt-spun ribbons[J]. Journal of Applied Physics, 2012, 112(8): 083901. [16] 曾明凤, 舒文路, 何 林. 铁的电子自旋相变对下地幔方镁铁矿光学性质的影响[J]. 四川大学学报(自然科学版), 2018, 55(3): 554-558. ZENG M F, SHU W L, HE L. Effects of the electronic spin-transition in iron on optical properties of lower-mantle ferropericlase[J]. Journal of Sichuan University (Natural Science Edition), 2018, 55(3): 554-558 (in Chinese). [17] CLARK S J, SEGALL M D, PICKARD C J, et al. First principles methods using CASTEP[J]. Zeitschrift Für Kristallographie-Crystalline Materials, 2005, 220(5/6): 567-570. [18] VANDERBILT D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Physical Review B, 1990, 41(11): 7892-7895. |