[1] 申 展, 江志东, 张鹏飞, 等. 低温甲醇水重整制氢催化剂研究进展[J]. 过程工程学报, 2022, 22(5): 573-585. SHEN Z, JIANG Z D, ZHANG P F, et al. Progress on catalysts for hydrogen production by low temperature methanol water reforming[J]. The Chinese Journal of Process Engineering, 2022, 22(5): 573-585 (in Chinese). [2] BEHRENS M, FURCHE A, KASATKIN I, et al. The potential of microstructural optimization in metal/oxide catalysts: higher intrinsic activity of copper by partial embedding of copper nanoparticles[J]. ChemCatChem, 2010, 2(7): 816-818. [3] SPENCER M S. The role of zinc oxide in Cu/ZnO catalysts for methanol synthesis and the water-gas shift reaction[J]. Topics in Catalysis, 1999, 8(3): 259-266. [4] TARASOV A, SCHUMANN J, GIRGSDIES F, et al. Thermokinetic investigation of binary Cu/Zn hydroxycarbonates as precursors for Cu/ZnO catalysts[J]. Thermochimica Acta, 2014, 591: 1-9. [5] BEHRENS M, KIÃ NER S, GIRSGDIES F, et al. Knowledge-based development of a nitrate-free synthesis route for Cu/ZnO methanol synthesis catalystsviaformate precursors[J]. Chemical Communications, 2011, 47(6): 1701-1703. [6] BHATTA L K G, GUNDANNA S K, MITRA A, et al. Structural and morphological aspects of transformation of aurichalcite precursor into zinc copper mixed metal oxide: an experimental investigation[J]. Materialia, 2021, 18: 101173. [7] WILKINSON S K, VAN DE WATER L G A, MILLER B, et al. Understanding the generation of methanol synthesis and water gas shift activity over copper-based catalysts-a spatially resolved experimental kinetic study using steady and non-steady state operation under CO/CO2/H2 feeds[J]. Journal of Catalysis, 2016, 337: 208-220. [8] VESBORG P C K, CHORKENDORFF I, KNUDSEN I, et al. Transient behavior of Cu/ZnO-based methanol synthesis catalysts[J]. Journal of Catalysis, 2009, 262(1): 65-72. [9] MILLAR G J, HOLM I H, UWINS P J R, et al. Characterization of precursors to methanol synthesis catalysts Cu/ZnO system[J]. Journal of the Chemical Society, Faraday Transactions, 1998, 94(4): 593-600. [10] REDDY B J, FROST R L, LOCKE A. Synthesis and spectroscopic characterisation of aurichalcite (Zn, Cu2+)5(CO3)2(OH)6; implications for Cu-ZnO catalyst precursors[J]. Transition Metal Chemistry, 2008, 33(3): 331-339. [11] ZHENG H Y, NARKHEDE N, ZHANG H C, et al. Oriented isomorphous substitution: an efficient and alternative route to fabricate the Zn rich phase pure (Cu1-x, Znx)2(OH)2CO3 precursor catalyst for methanol synthesis[J]. ChemCatChem, 2020, 12(7): 2040-2049. [12] BEHRENS M, GIRGSDIES F, TRUNSCHKE A, et al. Minerals as model compounds for Cu/ZnO catalyst precursors: structural and thermal properties and IR spectra of mineral and synthetic (zincian) malachite, rosasite and aurichalcite and a catalyst precursor mixture[J]. European Journal of Inorganic Chemistry, 2009, 2009(10): 1347-1357. [13] LI J L, INUI T. Characterization of precursors of methanol synthesis catalysts, copper/zinc/aluminum oxides, precipitated at different pHs and temperatures[J]. Applied Catalysis A: General, 1996, 137(1): 105-117. |