[1] LIANG Q R, LI W Q, XIE L, et al. General synergistic capture-bonding superassembly of atomically dispersed catalysts on micropore-vacancy frameworks[J]. Nano Letters, 2022, 22(7): 2889-2897. [2] LIU W Z, LI M J, WEI Z Q, et al. Boron-induced phase-transition and selenium vacancy to enhance supercapacitive performance of cobalt diselenide[J]. Journal of Alloys and Compounds, 2022, 929: 167281. [3] YAO Q, HUANG B L, ZHANG N, et al. Channel-rich RuCu nanosheets for pH-universal overall water splitting electrocatalysis[J]. Angewandte Chemie, 2019, 58(39): 13983-13988. [4] LIU Y, YANG Y P, PENG Z K, et al. Self-crosslinking carbon dots loaded ruthenium dots as an efficient and super-stable hydrogen production electrocatalyst at all pH values[J]. Nano Energy, 2019, 65: 104023. [5] 李建林, 李光辉, 马速良, 等. 碳中和目标下制氢关键技术进展及发展前景综述[J]. 热力发电, 2021, 50(6): 1-8. LI J L, LI G H, MA S L, et al. Overview of the progress and development prospects of key technologies for hydrogen production under the goal of carbon neutrality[J]. Thermal Power Generation, 2021, 50(6): 1-8 (in Chinese). [6] SUN Y J, LIU C, GRAUER D C, et al. Electrodeposited cobalt-sulfide catalyst for electrochemical and photoelectrochemical hydrogen generation from water[J]. Journal of the American Chemical Society, 2013, 135(47): 17699-17702. [7] ZHAO Y Q, JIN B, ZHENG Y, et al. Charge state manipulation of cobalt selenide catalyst for overall seawater electrolysis[J]. Advanced Energy Materials, 2018, 8(29): 1801926. [8] FENG W H, FENG Y Q, CHEN J S, et al. Interfacial electronic engineering of Ru/FeRu nanoparticles as efficient trifunctional electrocatalyst for overall water splitting and Zn-air battery[J]. Chemical Engineering Journal, 2022, 437: 135456. [9] XIA X Y, WANG L J, SUI N, et al. Recent progress in transition metal selenide electrocatalysts for water splitting[J]. Nanoscale, 2020, 12(23): 12249-12262. [10] GUO Y X, YAO Z Y, SHANG C S, et al. P doped Co2Mo3Se nanosheets grown on carbon fiber cloth as an efficient hybrid catalyst for hydrogen evolution[J]. Journal of Materials Chemistry A, 2017, 5(24): 12043-12047. [11] MA F, LU J H, PU L Y, et al. Construction of hierarchical cobalt-molybdenum selenide hollow nanospheres architectures for high performance battery-supercapacitor hybrid devices[J]. Journal of Colloid and Interface Science, 2020, 563: 435-446. [12] ABU DAKKA Y, BALAMURUGAN J, BALAJI R, et al. Advanced Cu0.5Co0.5Se2 nanosheets and MXene electrodes for high-performance asymmetric supercapacitors[J]. Chemical Engineering Journal, 2020, 385: 123455. [13] LI L J, ZHAO J C, ZHU Y Q, et al. Bimetallic Ni/Co-ZIF-67 derived NiCo2Se4/N-doped porous carbon nanocubes with excellent sodium storage performance[J]. Electrochimica Acta, 2020, 353: 136532. [14] ZHU Q, XU A D, CHEN H M, et al. CuSe2 nanocubes enabling efficient sodium storage[J]. ACS Applied Materials & Interfaces, 2023, 15(10): 12976-12985. [15] MOHAMMADI A, MOOSAVIFARD S E, GOLJANIAN TABRIZI A, et al. Nanoporous CuCo2S4 microspheres: a novel positive electrode for high-performance hybrid energy storage devices[J]. ACS Applied Energy Materials, 2019, 2(1): 627-635. [16] WANG Q S, ZHANG Y F, JIANG H M, et al. Designed mesoporous hollow sphere architecture metal (Mn, Co, Ni) silicate: a potential electrode material for flexible all solid-state asymmetric supercapacitor[J]. Chemical Engineering Journal, 2019, 362: 818-829. [17] WANG G X, HUANG J, CHEN G L, et al. In-situ-engineered 3D Cu3Se2@CoSe2-NiSe2 nanostructures for highly efficient electrocatalytic water splitting[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(46): 17215-17224. [18] MOHAN H, HA G H, KIM G, et al. Cobalt-molybdenum-selenide nanoflowers for bifunctional visible light photocatalysis[J]. Chemosphere, 2023, 326: 138436. [19] WEI X Y, WAN C W, ZHANG Y, et al. Construct Ni-SnO2 core coated amorphous Ni(BO2)2 shell boosts water splitting for hydrogen production[J]. International Journal of Hydrogen Energy, 2023, 48(93): 36403-36411. [20] SHU Q, QIU W, LUO M, et al. Morphology-controlled hydrothermal synthesis of copper selenides with orange juice for highly efficient cationic dyes adsorption[J]. Materials Today Sustainability, 2022, 17: 100094. [21] ZARDKHOSHOUI A M, DAVARANI S S H. Construction of complex copper-cobalt selenide hollow structures as an attractive battery-type electrode material for hybrid supercapacitors[J]. Chemical Engineering Journal, 2020, 402: 126241. [22] WANG Y Q, JIAN C Y, HE X, et al. Self-supported molybdenum selenide nanosheets grown on urchin-like cobalt selenide nanowires array for efficient hydrogen evolution[J]. International Journal of Hydrogen Energy, 2020, 45(24): 13282-13289. [23] WU Y T, WANG F H, KE N W, et al. Self-supported cobalt/cobalt selenide heterojunction for highly efficient overall water splitting[J]. Journal of Alloys and Compounds, 2022, 925: 166683. [24] WU Y S, LIU X J, HAN D D, et al. Electron density modulation of NiCo2S4 nanowires by nitrogen incorporation for highly efficient hydrogen evolution catalysis[J]. Nature Communications, 2018, 9: 1425. |