[1] SHARMA B, FRONTIERA R R, HENRY A I, et al. SERS: materials, applications, and the future[J]. Materials Today, 2012, 15(1/2): 16-25. [2] ALIVISATOS A P. Semiconductor clusters, nanocrystals, and quantum dots[J]. Science, 1996, 271(5251): 933-937. [3] BUFFAT P, BOREL J P. Size effect on the melting temperature of gold particles[J]. Physical Review A, 1976, 13(6): 2287-2298. [4] DANIEL M C, ASTRUC D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology[J]. Chemical Reviews, 2004, 104(1): 293-346. [5] YANG Y M, GAO X N, YANG S J, et al. Synthesis and superior SERS performance of porous octahedron Cu2O with oxygen vacancy derived from MOFs[J]. Journal of Materials Science, 2021, 56(16): 9702-9711. [6] ZHOU C L, SUN L F, ZHANG F Q, et al. Electrical tuning of the SERS enhancement by precise defect density control[J]. ACS Applied Materials & Interfaces, 2019, 11(37): 34091-34099. [7] CAO Y, LIANG P, DONG Q M, et al. Facile reduction method synthesis of defective MoO2-x nanospheres used for SERS detection with high chemical enhancement[J]. Analytical Chemistry, 2019, 91(13): 8683-8690. [8] CONG S, YUAN Y Y, CHEN Z G, et al. Noble metal-comparable SERS enhancement from semiconducting metal oxides by making oxygen vacancies[J]. Nature Communications, 2015, 6: 7800. [9] GE J P, XU S, LIU L P, et al. A positive-microemulsion method for preparing nearly uniform Ag2Se nanoparticles at low temperature[J]. Chemistry, 2006, 12(13): 3672-3677. [10] YU T, JOO J, PARK Y I, et al. Large-scale nonhydrolytic sol-gel synthesis of uniform-sized ceria nanocrystals with spherical, wire, and tadpole shapes[J]. Angewandte Chemie, 2005, 44(45): 7411-7414. [11] GLOTZER S C, SOLOMON M J. Anisotropy of building blocks and their assembly into complex structures[J]. Nature Materials, 2007, 6: 557-562. [12] PENG J, SHEN J, YU X, et al. Construction of LSPR-enhanced 0D/2D CdS/MoO3-x S-scheme heterojunctions for visible-light-driven photocatalytic H2 evolution [J]. Chinese Journal of Catalysis, 2021, 42(1): 87-96. [13] XIE S Y, CHEN D, GU C J, et al. Molybdenum oxide/tungsten oxide nano-heterojunction with improved surface-enhanced Raman scattering performance[J]. ACS Applied Materials & Interfaces, 2021, 13(28): 33345-33353. [14] HU S, WANG X. Single-walled MoO3 nanotubes[J]. Journal of the American Chemical Society, 2008, 130(26): 8126-8127. [15] 刘燕梅, 吴振刚, 羡皓晗, 等. 氮化钛/氧化锰复合薄膜制备及其SERS特性研究[J]. 人工晶体学报, 2019, 48(11): 2050-2055. LIU Y M, WU Z G, XIAN H H, et al. Preparation and surface enhanced Raman spectroscopy study on titanium nitride/manganese oxide composite films[J]. Journal of Synthetic Crystals, 2019, 48(11): 2050-2055 (in Chinese). [16] 马 超, 武佳炜, 朱 琳, 等. g-C3N4/Ag纳米复合材料表面增强拉曼基底对婴幼儿糖果中的罗丹明B的痕量检测[J]. 化学学报, 2019, 77(10): 1024-1030. MA C, WU J W, ZHU L, et al. Trace detection of rhodamine B in infant candy by g-C3N4/Ag nanocomposite as surface-enhanced Raman scattering substrate[J]. Acta Chimica Sinica, 2019, 77(10): 1024-1030 (in Chinese). [17] 米悦溪, 贾程翔, 曹文慧, 等. Ag负载TiO2核壳基底的制备及对结晶紫的高效拉曼散射(SERS)检测[J]. 中国无机分析化学, 2023, 13(3): 293-298. MI Y X, JIA C X, CAO W H, et al. Preparation of Ag-loaded TiO2 core-shell substrate and its high efficiency SERS detection of crystal violet[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(3): 293-298 (in Chinese). [18] CONG S, WANG Z, GONG W B, et al. Electrochromic semiconductors as colorimetric SERS substrates with high reproducibility and renewability[J]. Nature Communications, 2019, 10: 678. [19] ZHENG X L, WANG X Z, TIAN Q Y, et al. Supercritical CO2 synthesis of Co-doped MoO3-x nanocrystals for multifunctional light utilization[J]. Chemical Communications, 2020, 56(55): 7649-7652. [20] KESHAVARZ M, CHOWDHURY A K M R H, KASSANOS P, et al. Self-assembled N-doped Q-dot carbon nanostructures as a SERS-active biosensor with selective therapeutic functionality[J]. Sensors and Actuators B: Chemical, 2020, 323: 128703. [21] GAO M S, MIAO P, HAN X J, et al. Hollow transition metal hydroxide octahedral microcages for single particle surface-enhanced Raman spectroscopy[J]. Inorganic Chemistry Frontiers, 2019, 6(9): 2318-2324. [22] PATIL M K, GAIKWAD S H, MUKHERJEE S P. Phase- and morphology-controlled synthesis of tunable plasmonic MoO3-x nanomaterials for ultrasensitive surface-enhanced Raman spectroscopy detection[J]. The Journal of Physical Chemistry C, 2020, 124(38): 21082-21093. [23] GUAN H M, YI W C, LI T, et al. Low temperature synthesis of plasmonic molybdenum nitride nanosheets for surface enhanced Raman scattering[J]. Nature Communications, 2020, 11: 3889. [24] MOURA J V B, SILVEIRA J V, DA SILVA FILHO J G, et al. Temperature-induced phase transition in h-MoO3: stability loss mechanism uncovered by Raman spectroscopy and DFT calculations[J]. Vibrational Spectroscopy, 2018, 98: 98-104. [25] HAMMOND S R, MEYER J, WIDJONARKO N E, et al. Low-temperature, solution-processed molybdenum oxide hole-collection layer for organic photovoltaics[J]. Journal of Materials Chemistry, 2012, 22(7): 3249-3254. [26] AVILÉS F, CAUICH-RODRÍGUEZ J V, MOO-TAH L, et al. Evaluation of mild acid oxidation treatments for MWCNT functionalization[J]. Carbon, 2009, 47(13): 2970-2975. [27] WU H, WANG H, LI G H. Metal oxide semiconductor SERS-active substrates by defect engineering[J]. The Analyst, 2017, 142(2): 326-335. [28] LI N, LI Y M, SUN G Y, et al. Selective and tunable near-infrared and visible light transmittance of MoO3-x nanocomposites with different crystallinity[J]. Chemistry-An Asian Journal, 2017, 12(14): 1709-1714. [29] ZHANG Q Q, LI X S, MA Q, et al. A metallic molybdenum dioxide with high stability for surface enhanced Raman spectroscopy[J]. Nature Communications, 2017, 8: 14903. [30] FENG C Y, TANG L, DENG Y C, et al. Maintaining stable LSPR performance of W18O49 by protecting its oxygen vacancy: a novel strategy for achieving durable sunlight driven photocatalysis[J]. Applied Catalysis B: Environmental, 2020, 276: 119167. [31] HUANG Q K, LIU Q Y, LI X, et al. Defect induced the surface enhanced Raman scattering of MoO3-x thin films by thermal treatment[J]. Materials Today Communications, 2022, 33: 105025. [32] GREINER M T, HELANDER M G, TANG W M, et al. Universal energy-level alignment of molecules on metal oxides[J]. Nature Materials, 2012, 11: 76-81. [33] LING X, XIE L M, FANG Y, et al. Can graphene be used as a substrate for Raman enhancement?[J]. Nano Letters, 2010, 10(2): 553-561. [34] SONG G, GONG W B, CONG S, et al. Ultrathin two-dimensional nanostructures: surface defects for morphology-driven enhanced semiconductor SERS[J]. Angewandte Chemie, 2021, 60(10): 5505-5511. [35] CHEN S, YANG Z L, MENG L Y, et al. Electromagnetic enhancement in shell-isolated nanoparticle-enhanced Raman scattering from gold flat surfaces[J]. The Journal of Physical Chemistry C, 2015, 119(9): 5246-5251. |