[1] YUAN C B, YIN L W, DU P, et al. Microgroove-patterned Zn metal anode enables ultra-stable and low-overpotential Zn deposition for long-cycling aqueous batteries[J]. Chemical Engineering Journal, 2022, 442: 136231. [2] YANG S N, DU H X, LI Y T, et al. Advances in the structure design of substrate materials for zinc anode of aqueous zinc ion batteries[J]. Green Energy & Environment, 2023, 8(6): 1531-1552. [3] LUO X B, ZHOU M, LUO Z G, et al. Regulation of desolvation process and dense electrocrystalization behavior for stable Zn metal anode[J]. Energy Storage Materials, 2023, 57: 628-638. [4] ZHU C Y, LI P Z, XU G Y, et al. Recent progress and challenges of Zn anode modification materials in aqueous Zn-ion batteries[J]. Coordination Chemistry Reviews, 2023, 485: 215142. [5] SHI Z H, CHEN S L, XU Z J, et al. Metal oxide aerogels: a new horizon for stabilizing anodes in rechargeable zinc metal batteries[J]. Advanced Energy Materials, 2023, 13(20): 2300331. [6] CANEPA P, SAI GAUTAM G, HANNAH D C, et al. Odyssey of multivalent cathode materials: open questions and future challenges[J]. Chemical Reviews, 2017, 117(5): 4287-4341. [7] MA L, SCHROEDER M A, BORODIN O, et al. Realizing high zinc reversibility in rechargeable batteries[J]. Nature Energy, 2020, 5: 743-749. [8] SHEN D Y, RAO A M, ZHOU J, et al. High-potential cathodes with nitrogen active centres for quasi-solid proton-ion batteries[J]. Angewandte Chemie, 2022, 61(22): e202201972. [9] BLANC L E, KUNDU D P, NAZAR L F. Scientific challenges for the implementation of Zn-ion batteries[J]. Joule, 2020, 4(4): 771-799. [10] ZOU P C, ZHANG R, YAO L B, et al. Ultrahigh-rate and long-life zinc-metal anodes enabled by self-accelerated cation migration[J]. Advanced Energy Materials, 2021, 11(31): 2100982. [11] JIANG G Q, XUE R, HE L X, et al. Tailoring zincophilicity via amorphous Se-rich selenides coating for stable Zn anode[J]. Chemical Engineering Journal, 2023, 472: 145016. [12] ZHU D L, ZHENG Y F, XIONG Y, et al. In situ growth of S-doped ZnO thin film enabling dendrite-free zinc anode for high-performance aqueous zinc-ion batteries[J]. Journal of Alloys and Compounds, 2022, 918: 165486. [13] XIANG J W, YANG L Y, YUAN L X, et al. Alkali-metal anodes: from lab to market[J]. Joule, 2019, 3(10): 2334-2363. [14] SHIN J, LEE J M, KIM Y, et al. Highly reversible, grain-directed zinc deposition in aqueous zinc ion batteries[J]. Advanced Energy Materials, 2021, 11(39): 2100676. [15] CHU Y Z, REN L X, HU Z L, et al. An in-depth understanding of improvement strategies and corresponding characterizations towards Zn anode in aqueous Zn-ions batteries[J]. Green Energy & Environment, 2023, 8(4): 1006-1042. [16] ZHAO J, YING Y P, WANG G L, et al. Covalent organic framework film protected zinc anode for highly stable rechargeable aqueous zinc-ion batteries[J]. Energy Storage Materials, 2022, 48: 82-89. [17] LI Y T, YANG S N, DU H X, et al. A stable fluoride-based interphase for a long cycle Zn metal anode in an aqueous zinc ion battery[J]. Journal of Materials Chemistry A, 2022, 10(27): 14399-14410. [18] CAO L S, LI D, POLLARD T, et al. Fluorinated interphase enables reversible aqueous zinc battery chemistries[J]. Nature Nanotechnology, 2021, 16: 902-910. [19] CHEN W J, TANG J H, JI F Q, et al. A multifunctional gradient coating enables dendrite-free and side reaction-free zinc anodes for stable zinc-ion batteries[J]. Cell Reports Physical Science, 2023, 4(4): 101344. [20] LIU X M, KONG F G, WANG Z R, et al. Strontium titanate modified separator regulates ion flux to stabilize aqueous zinc ion battery anodes[J]. Scripta Materialia, 2023, 233: 115520. [21] ZHANG H X,HENG R,LIU H, et al. Research progress on energy storage characteristics and mechanism of manganese dioxide anode in water zinc-ion batteries[J]. Fine Chemicals, 2021, 38(03): 464-473. [22] LI X Y, WANG L, FU Y H, et al. Optimization strategies toward advanced aqueous zinc-ion batteries: from facing key issues to viable solutions[J]. Nano Energy, 2023, 116: 108858. [23] LIU H T, ZHANG Y M, WANG C, et al. Understanding and controlling the nucleation and growth of Zn electrodeposits for aqueous zinc-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(28): 32930-32936. [24] ZHENG J X, HUANG Z H, MING F W, et al. Surface and interface engineering of Zn anodes in aqueous rechargeable Zn-ion batteries[J]. Small, 2022, 18(21): e2200006. [25] HONG L, WU X M, WANG L Y, et al. Highly reversible zinc anode enabled by a cation-exchange coating with Zn-ion selective channels[J]. ACS Nano, 2022, 16(4): 6906-6915. [26] YANG Y, LIU C Y, LV Z H, et al. Synergistic manipulation of Zn2+ ion flux and desolvation effect enabled by anodic growth of a 3D ZnF2 matrix for long-lifespan and dendrite-free Zn metal anodes[J]. Advanced Materials, 2021, 33(11): e2007388. [27] WU X, LONG F, XIANG Y, et al. Research progress of anode materials for zinc-based aqueous battery in a neutral or weak acid system[J]. Progress in Chemistry, 2021, 33(11): 1983-2001. [28] WEN Q, FU H, CUI R D, et al. Recent advances in interfacial modification of zinc anode for aqueous rechargeable zinc ion batteries[J]. Journal of Energy Chemistry, 2023, 83: 287-303. |