[1] 滕 冉, 常 青, 吴志强, 等. 热屏结构对大直径单晶硅生长影响的数值分析[J]. 人工晶体学报, 2014, 43(3): 508-512. TENG R, CHANG Q, WU Z Q, et al. Numerical analysis of the effect of heat shield structure on growth of large diameter monocrystalline silicon[J]. Journal of Synthetic Crystals, 2014, 43(3): 508-512 (in Chinese). [2] 林明献. 硅晶圆半导体材料技术[M].全华图书股份有限公司, 2020. LIN M X. Silicon wafer semiconductor[M]. Chuan Hwa Book Co., Ltd., 2020 (in Chinese). [3] 苏文佳, 左 然, KALAEV V. 单晶炉导流筒、热屏及炭毡对单晶硅生长影响的优化模拟[J]. 人工晶体学报, 2010, 39(2): 524-528+544. SU W J, ZUO R, KALAEV V. Optimization of crystal growth by changes of flow guide, radiation shield and insulation in CZ Si furnace[J]. Journal of Synthetic Crystals, 2010, 39(2): 524-528+544 (in Chinese). [4] FANG H S, JIN Z L, HUANG X M. Study and optimization of gas flow and temperature distribution in a Czochralski configuration[J]. Journal of Crystal Growth, 2012, 361: 114-120. [5] ZHANG J, LIU D, ZHAO Y, et al. Impact of heat shield structure in the growth process of Czochralski silicon derived from numerical simulation[J]. Chinese Journal of Mechanical Engineering, 2014, 27(3): 504-510. [6] NAM P O, YI K W. Simulation of the thermal fluctuation according to the melt height in a CZ growth system[J]. Journal of Crystal Growth, 2010, 312(8): 1453-1457. [7] SON S S, YI K W. Experimental study on the effect of crystal and crucible rotations on the thermal and velocity field in a low Prandtl number melt in a large crucible[J]. Journal of Crystal Growth, 2005, 275(1/2): e249-e257. [8] CHEN Q S, DENG G Y, EBADIAN A, et al. Numerical study on flow field and temperature distribution in growth process of 200 mm Czochralski silicon crystals[J]. Journal of Rare Earths, 2007, 25: 345-348. [9] DORNBERGER E, TOMZIG E, SEIDL A, et al. Thermal simulation of the Czochralski silicon growth process by three different models and comparison with experimental results[J]. Journal of Crystal Growth, 1997, 180(3/4): 461-467. [10] TENG Y Y, CHEN J C, HUANG C C, et al. Numerical investigation of the effect of heat shield shape on the oxygen impurity distribution at the crystal-melt interface during the process of Czochralski silicon crystal growth[J]. Journal of Crystal Growth, 2012, 352(1): 167-172. [11] 张向宇, 关小军, 潘忠奔, 等. 热屏位置对直拉硅单晶V/G、点缺陷和热应力影响的模拟[J]. 人工晶体学报, 2014, 43(4): 771-777. ZHANG X Y, GUAN X J, PAN Z B, et al. Simulation on effect of heat shield position on the V/G and point defect and thermal stress of gzochralski silicon[J]. Journal of Synthetic Crystals, 2014, 43(4): 771-777 (in Chinese). [12] DO W S, SANG HL, YOUNG H M, et a1. Oxygen content increasing mechanism in czochralski silicon crystals doped with heavy antimony under a double—typed heat shield[J]. Journal of Crystal Growth, 201l, 325(1): 27-31. [13] 张西亚, 高德东, 王 珊, 等. 热屏下降式单晶炉设计与研究[J]. 人工晶体学报, 2021, 50(6): 987-995. ZHANG X Y, GAO D D, WANG S, et al. Design and research on descended heat shield of the single crystal furnace[J]. Journal of Synthetic Crystals, 2021, 50(6): 987-995 (in Chinese). [14] 芮 阳, 王忠保, 盛 旺, 等. 热屏结构对200 mm半导体级提拉单晶硅中氧含量分布的影响[J]. 人工晶体学报, 2023, 52(6): 1110-1119. RUI Y, WANG Z B, SHENG W, et al. Effect of heat shield structure on the distribution of oxygen content in 200 mm semiconductor-grade Czochralski monocrystalline silicon[J]. Journal of Synthetic Crystals, 2023, 52(6): 1110-1119 (in Chinese). [15] 谭建国. 使用ANSYS 6.0进行有限元分析[M]. 北京: 北京大学出版社, 2002. TAN J G. Perform finite element analysis using ANSYS 6.0[M]. Beijing: Peking University Press, 2002 (in Chinese). [16] 巴特, 威尔逊. 有限元分析中的数值方法[M]. 林公豫, 罗 恩, 译. 北京: 科学出版社, 1985. BATHE K J, WILSON E L. Numerical method in finite element analysis[M]. LIN G Y, LUO E, Transl. Beijing: Science Press, 1985 (in Chinese). [17] BATCHELOR G K. An introduction to fluid dynamics[M]. Cambridge, England: Cambridge University Press, 1967. [18] 俞昌铭. 热传导及其数值分析[M]. 北京: 清华大学出版社, 1981. YU C M. Heat conduction and its numerical analysis[M]. Beijing: Tsinghua University Press, 1981 (in Chinese). |