JOURNAL OF SYNTHETIC CRYSTALS ›› 2024, Vol. 53 ›› Issue (8): 1289-1301.
• Reviews • Next Articles
LEI Shasha1,2, GONG Qiaorui2,3, ZHAO Chengchun2,3, SUN Xiaohui1, HANG Yin2,3
Received:
2024-04-25
Online:
2024-08-15
Published:
2024-08-14
[1] XIAN M H, FARES C, REN F, et al. Asymmetrical contact geometry to reduce forward-bias degradation in β-Ga2O3 rectifiers[J]. ECS Journal of Solid State Science and Technology, 2020, 9(3): 035007. [2] JIN S Q, WANG X, WANG X L, et al. Effect of phase junction structure on the photocatalytic performance in overall water splitting: Ga2O3 photocatalyst as an example[J]. The Journal of Physical Chemistry C, 2015, 119(32): 18221-18228. [3] CHEN X, LIU K W, ZHANG Z Z, et al. Self-powered solar-blind photodetector with fast response based on Au/β-Ga2O3 nanowires array film Schottky junction[J]. ACS Applied Materials & Interfaces, 2016, 8(6): 4185-4191. [4] CUI S J, MEI Z X, ZHANG Y H, et al. Room-temperature fabricated amorphous Ga2O3 high-response-speed solar-blind photodetector on rigid and flexible substrates[J]. Advanced Optical Materials, 2017, 5(19): 1700454. [5] DEY S, DHAL G C. Catalytic conversion of carbon monoxide into carbon dioxide over spinel catalysts: an overview[J]. Materials Science for Energy Technologies, 2019, 2(3): 575-588. [6] MAHAJAN H, GODARA S K, SRIVASTAVA A K. Synthesis and investigation of structural, morphological, and magnetic properties of the manganese doped cobalt-zinc spinel ferrite[J]. Journal of Alloys and Compounds, 2022, 896: 162966. [7] IL′IN A, IVANOVA A, KOZLOVSKAYA K, et al. Electric and photoelectric properties of complex zinc and cobalt oxides with spinel structure[C]//14th International Conference “Interaction of Radiation with Solids”, September 21-24, 2021, Minsk, Belarus. [8] ANEESH P, JAYARAJ M. Growth and characterization of nanostructured wide band gap semiconductors for optoelectronic applications[D]. Cochin University of Science & Technology, 2010. [9] TSAI S H, SHEN Y C, HUANG C Y, et al. Deep-ultraviolet Schottky photodetectors with high deep-ultraviolet/visible rejection based on a ZnGa2O4 thin film[J]. Applied Surface Science, 2019, 496: 143670. [10] SINGH A V, KHODADADI B, MOHAMMADI J B, et al. Bulk single crystal-like structural and magnetic characteristics of epitaxial spinel ferrite thin films with elimination of antiphase boundaries[J]. Advanced Materials, 2017, 29(30): 1701222. [11] DA SILVA M N, DE CARVALHO J M, DE ABREU FANTINI M C, et al. Nanosized ZnGa2O4∶Cr3+ spinels as highly luminescent materials for bioimaging[J]. ACS Applied Nano Materials, 2019, 2(11): 6918-6927. [12] JIN M H, LI F, XIAHOU J Q, et al. A new persistent luminescence phosphor of ZnGa2O4∶Ni2+ for the second near-infrared transparency window[J]. Journal of Alloys and Compounds, 2023, 931: 167491. [13] LIU X Q, CHEN L, HUO X W, et al. From two-step excitation to persistent luminescence: revisiting ZnGa2O4∶Cr3+ phosphor through upconversion charging approach[J]. Advanced Optical Materials, 2024: 2303018. [14] CHI Z, TARNTAIR F G, FRÉGNAUX M, et al. Bipolar self-doping in ultra-wide bandgap spinel ZnGa2O4[J]. Materials Today Physics, 2021, 20: 100466. [15] MONROY E, OMN S F, CALLE F. Wide-bandgap semiconductor ultraviolet photodetectors[J]. Semiconductor Science and Technology, 2003, 18(4): R33-R51. [16] YANG J L, LIU K W, SHEN D Z. Recent progress of ZnMgO ultraviolet photodetector[J]. Chinese Physics B, 2017, 26(4): 047308. [17] PEARTON S J, YANG J C, CARY P H IV, et al. A review of Ga2O3 materials, processing, and devices[J]. Applied Physics Reviews, 2018, 5(1): 011301. [18] CHEN M I, SINGH A K, CHIANG J L, et al. Zinc gallium oxide-a review from synthesis to applications[J]. Nanomaterials, 2020, 10(11): 2208. [19] ZHANG L, JI G F, ZHAO F, et al. First-principles study of the structural, mechanical and electronic properties of ZnX2O4(X=Al, Cr and Ga)[J]. Chinese Physics B, 2011, 20(4): 047102. [20] BRIK M G. First-principles calculations of electronic, optical and elastic properties of ZnAl2S4 and ZnGa2O4[J]. Journal of Physics and Chemistry of Solids, 2010, 71(10): 1435-1442. [21] DIXIT H, TANDON N, COTTENIER S, et al. Electronic structure and band gap of zinc spinel oxides beyond LDA∶ZnAl2O4, ZnGa2O4 and ZnIn2O4[J]. New Journal of Physics, 2011, 13(6): 063002. [22] SANTIA M D, LOOK D C, BADESCU S C. Electron-phonon coupling and electron mobility in degenerately doped oxides from first-principles[J]. Optical Engineering, 2020, 59: 067103. [23] SAMPATH S K, KANHERE D G, PANDEY R. Electronic structure of spinel oxides: zinc aluminate and zinc gallate[J]. Journal of Physics Condensed Matter, 1999, 11(18): 3635-3644. [24] WANG B, WANG H, TU B T, et al. Optical transmission, dispersion, and transition behavior of ZnGa2O4 transparent ceramic[J]. Journal of the American Ceramic Society, 2023, 106(2): 1230-1239. [25] GALAZKA Z, GANSCHOW S, SCHEWSKI R, et al. Ultra-wide bandgap, conductive, high mobility, and high quality melt-grown bulk ZnGa2O4 single crystals[J]. APL Materials, 2019, 7(2): 022512. [26] LUO S J, HARRINGTON G F, WU K T, et al. Heteroepitaxial (111) ZnGa2O4 thin films grown on (001) sapphire by pulsed laser deposition[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2020, 14(9): 2000270. [27] WANG L, ZHANG W R, LIU N T, et al. Epitaxial growth and stoichiometry control of ultrawide bandgap ZnGa2O4 films by pulsed laser deposition[J]. Coatings, 2021, 11(7): 782. [28] 姜雁博. ZnGa2O4电子结构模拟及其光催化和光学性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. JIANG Y B. Simulation of electronic structure and research on photocatalytic and optical properties of zinc gallium oxide[D].Harbin: Harbin Institute of Technology, 2020 (in Chinese). [29] NISHIWAKI M, FUJIWARA H. Highly accurate prediction of material optical properties based on density functional theory[J]. Computational Materials Science, 2020, 172: 109315. [30] CHASE A B, OSMER J A. Localized cooling in flux crystal growth[J]. Journal of the American Ceramic Society, 1967, 50(6): 325-328. [31] VAN DER STRATEN P J M, METSELAAR R, JONKER H D. Flux growth of ZnGa2O4 single crystals[J]. Journal of Crystal Growth, 1978, 43(2): 270-272. [32] YAN Z, TAKEI H. Flux growth of single crystals of spinel ZnGa2O4 and CdGa2O4[J]. Journal of Crystal Growth, 1997, 171(1/2): 131-135. [33] YAN Z, TAKEI H, KAWAZOE H. Electrical conductivity in transparent ZnGa2O4: reduction and surface-layer structure transformation[J]. Journal of the American Ceramic Society, 1998, 81(1): 180-186. [34] LIU J Y, LI Z Y, HAO W B, et al. Pt/ZnGa2O4 Schottky barrier diodes fabricated by using single crystal n-ZnGa2O4 (111) substrates[J]. IEEE Electron Device Letters, 2022, 43(12): 2061-2064. [35] HORNG R H, HUANG C Y, OU S L, et al. Epitaxial growth of ZnGa2O4: a new, deep ultraviolet semiconductor candidate[J]. Crystal Growth & Design, 2017, 17(11): 6071-6078. [36] TSAI S H, BASU S, HUANG C Y, et al. Deep-ultraviolet photodetectors based on epitaxial ZnGa2O4 thin films[J]. Scientific Reports, 2018, 8: 14056. [37] CHIKOIDZE E, SARTEL C, MADACI I, et al. P-type ultrawide-band-gap spinel ZnGa2O4: new perspectives for energy electronics[J]. Crystal Growth & Design, 2020, 20(4): 2535-2546. [38] HAN D Y, LIU K W, HOU Q C, et al. Self-powered solar-blind ZnGa2O4 UV photodetector with ultra-fast response speed[J]. Sensors and Actuators A: Physical, 2020, 315: 112354. [39] SOONMIN H O. A review of nanostructured thin films for gas sensing and corrosion protection[J]. Mediterranean Journal of Chemistry, 2018, 7(6): 433-451. [40] JANG Y, HONG S, SEO J, et al. Thin film transistors based on ultra-wide bandgap spinel ZnGa2O4[J]. Applied Physics Letters, 2020, 116(20): 202104. [41] GUO A Q, ZHANG L C, CAO N, et al. Pulsed laser deposition of ZnGa2O4 thin films on Al2O3 and Si substrates for deep optoelectronic devices applications[J]. Applied Physics Express, 2023, 16(2): 021004. [42] TIWARI A. Handbook of antimicrobial coatings[M]. Amsterdam: Elsevier, 2017: 321-355. [43] 聂 霞, 冒守栋, 晏敏胜, 等. 磁控溅射Al-Ti合金薄膜的结构与性能变化[J]. 中国表面工程, 2014, 27(4): 95-99. NIE X, MAO S D, YAN M S, et al. Structure and properties variation of Al-Ti alloy coatings prepared by magnetron sputtering[J]. China Surface Engineering, 2014, 27(4): 95-99 (in Chinese). [44] HONG Y E, KIM Y S, DO K, et al. Thermal stability of Al- and Zr-doped HfO2 thin films grown by direct current magnetron sputtering[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2005, 23(5): 1413-1418. [45] WANG, XU, HUANG, et al. Structural characteristics and photoluminescence properties of sputter-deposition ZnGa2O4 thin films on sapphire and Si(100) substrates[J]. Coatings, 2019, 9(8): 469. [46] XIE C, LU X T, TONG X W, et al. Recent progress in solar-blind deep-ultraviolet photodetectors based on inorganic ultrawide bandgap semiconductors[J]. Advanced Functional Materials, 2019, 29(9): 1806006. [47] 韩冬阳. ZnGa2O4基日盲紫外光电探测器的研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2022. HAN D Y. The study of ZnGa2O4 based solar-blind ultraviolet photodetectors[D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), 2022(in Chinese). [48] ZHAO B, WANG F, CHEN H Y, et al. An ultrahigh responsivity (9.7 mA·W-1) self-powered solar-blind photodetector based on individual ZnO-Ga2O3 heterostructures[J]. Advanced Functional Materials, 2017, 27(17): 1700264. [49] WANG Y F, LI L, WANG H B, et al. An ultrahigh responsivity self-powered solar-blind photodetector based on a centimeter-sized β-Ga2O3/polyaniline heterojunction[J]. Nanoscale, 2020, 12(3): 1406-1413. [50] CHANG S P, HUANG W L, HUANG L W, et al. Tri-layer structure ZnGa2O4-based resistive random access memory[J]. ECS Journal of Solid State Science and Technology, 2021, 10(6): 065003. [51] 杨 奔. 基于宽禁带半导体ZnGa2O4薄膜的忆阻器及物理瞬态研究[D]. 重庆: 重庆大学, 2022. YANG B. Research on memristor and physically transient based on wide-bandgap semiconductor ZnGa2O4 thin films[D].Chongqing: Chongqing University, 2022 (in Chinese). [52] SHRESTHA S, FISCHER R, MATT G J, et al. High-performance direct conversion X-ray detectors based on sintered hybrid lead triiodide perovskite wafers[J]. Nature Photonics, 2017, 11: 436-440. [53] ROUXEL J R, KOWALEWSKI M, BENNETT K, et al. X-ray sum frequency diffraction for direct imaging of ultrafast electron dynamics[J]. Physical Review Letters, 2018, 120(24): 243902. [54] ZHANG Z P, CHEN Z M, CHEN M N, et al. ε-Ga2O3 thin film avalanche low-energy X-ray detectors for highly sensitive detection and fast-response applications[J]. Advanced Materials Technologies, 2021, 6(4): 2001094. [55] CHEN J W, TANG H L, LIU B, et al. High-performance X-ray detector based on single-crystal β-Ga2O3∶Mg[J]. ACS Applied Materials & Interfaces, 2021, 13(2): 2879-2886. [56] AHMAD KHAN J, MAITHANI Y, HORNG R H, et al. Investigating mechanical properties of sintered ZnGa2O4 ceramics using nanoindentation[J]. Ceramics International, 2022, 48(18): 27064-27075. [57] RANA S, CHIU S J, HUANG C Y, et al. Direct hard X-ray photodetector with superior sensitivity based on ZnGa2O4 epilayer grown by metalorganic chemical vapor deposition[J]. Materials Today Advances, 2023, 19: 100411. [58] ROCCAFORTE F, FIORENZA P, GRECO G, et al. Emerging trends in wide band gap semiconductors (SiC and GaN) technology for power devices[J]. Microelectronic Engineering, 2018, 187/188: 66-77. [59] ROCCAFORTE F, GIANNAZZO F, GRECO G. Ion implantation doping in silicon carbide and gallium nitride electronic devices[J]. Micro, 2022, 2(1): 23-53. [60] SINGH A K, YEN C C, HUANG S M, et al. Growth and performance enhancement of sputtered ZnGa2O4 MOSFETs on sapphire substrates[J]. ACS Applied Electronic Materials, 2024, 6(2): 1356-1364. |
[1] | SUN Yuanlong, HU Ziyu, ZHENG Guozong. Growth and Photoelectric Properties Characterization of Large-Sized CH3NH3PbBr3 Crystal [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1313-1318. |
[2] | YANG Tao, CHEN Caiming, HUANG Yujia, WU Shaoping, XU Huarui, WANG Kunzhe, ZHU Guisheng. Preparation and Properties of ITO/AgNWs/ITO Films [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(7): 1150-1159. |
[3] | CONG Wenbo, PENG Shaolong, WANG Hang, LI Lihua, HUANG Jinliang. Preparation and Photoelectric Properties of Co3O4@BiVO4 Composite Thin Films [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(10): 1729-1737. |
[4] | FU Wenfeng, ZHU Xupeng, LIAO Jun, RU Qiang, XUE Shuwen, ZHANG Jun. Research Progress and Prospect of CZTS-Based Single Crystal Materials [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(1): 12-24. |
[5] | WANG Zhengpeng, ZHANG Chongde, SUN Xinyu, HU Tiancheng, CUI Mei, ZHANG Yijun, GONG Hehe, REN Fangfang, GU Shulin, ZHANG Rong, YE Jiandong. MOCVD Epitaxy of β-Ga2O3 Films on Off-Cut Angled Sapphire Substrates and Fabrication of Solar-Blind Ultraviolet Photodetector [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(6): 1007-1015. |
[6] | LIN Zefeng, SUN Weixuan, LIU Tianxiang, TU Sijia, NI Zhuang, BAI Xinbo, ZHAO Zhanyi, ZHANG Jiquan, CHEN Fucong, HU Wei, FENG Zhongpei, YUAN Jie, JIN Kui. Research Progress on Superconducting Films Prepared by Pulsed Laser Deposition [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(6): 1036-1051. |
[7] | SUI Zhanren, XU Lingbo, CUI Can, WANG Rong, YANG Deren, PI Xiaodong, HAN Xuefeng. Research Progress on Numerical Simulation of Single Crystal Silicon Carbide Prepared by Top-Seeded Solution Growth Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(6): 1067-1085. |
[8] | WU Cheng, ZHU Zhaojie, LI Jianfu, TU Chaoyang, LYU Peiwen, WANG Yan. Fabrication of h-BN Films by Reactive Sputtering Method for Solar-Blind Ultraviolet Detectors [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(5): 798-804. |
[9] | GENG Fangjuan, YANG Lei, ZHU Jiaqi. Effect of Annealing Method and Temperature on Structure, Morphology and Photoelectric Properties of CuI Thin Films by Layer by Layer Iodization [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(5): 842-848. |
[10] | CAO Sheng, ZHANG Feng, LIU Shaoxiang, CHEN Sikai, ZHAO Yang, SHI Xuan, ZHAO Hongquan. Preparation and Photoelectric Properties of Er-Doped WS2 [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(5): 849-856. |
[11] | LEI Muyun, LI Zhen, ZHANG Wei, PANG Zhenli, SHI Shuangshuang, HUANG Cunxin. Research Progress on Magnesium Aluminate Spinel Transparent Ceramic [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(12): 2108-2124. |
[12] | LAN Boyang, QI Wanxin, LI Dong, HAN Fenglan. Photoelectric Properties of Bi2S3/MIL-125(Ti) Composites with n-n Heterostructure [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(1): 139-148. |
[13] | HAN Yuebin, PU Yong, SHI Jianxin. Advances in Chemical Vapor Deposition Equipment Used for SiC Epitaxy [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(7): 1300-1308. |
[14] | YIN Jiaqi, YU Chunyan, ZHAI Guangmei, LI Tianbao, ZHANG Zhuxia. Effect of Indium and Gallium Co-Doping on Growth Behavior and Photoelectric Properties of n-ZnO Nanorods/p-GaN Heterojunction [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(6): 1012-1019. |
[15] | LIU Caiyun, GAO Wei, YIN Hong. Research Progress of Cubic Boron Nitride [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(5): 781-800. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||