[1] 孙 军, 郝永鑫, 张 玲, 等. 铌酸锂晶体及其应用概述[J]. 人工晶体学报, 2020, 49(6): 947-964. SUN J, HAO Y X, ZHANG L, et al. Brief review of lithium niobate crystal and its applications[J]. Journal of Synthetic Crystals, 2020, 49(6): 947-964 (in Chinese). [2] NIU Y R, YAN X, CHEN J X, et al. Research progress on periodically poled lithium niobate for nonlinear frequency conversion[J]. Infrared Physics and Technology, 2022, 125: 104243. [3] LIU J, DUAN Y M, LI Z H, et al. Recent progress in nonlinear frequency conversion of optical vortex lasers[J]. Frontiers in Physics, 2022, 10: 865029. [4] POBERAJ G, HU H, SOHLER W, et al. Lithium niobate on insulator (LNOI) for micro-photonic devices[J]. Laser & Photonics Reviews, 2012, 6(4): 488-503. [5] BOES A, CORCORAN B, CHANG L, et al. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits[J]. Laser & Photonics Reviews, 2018, 12(4): 1700256. [6] LUO R, JIANG H W, ROGERS S, et al. On-chip second-harmonic generation and broadband parametric down-conversion in a lithium niobate microresonator[J]. Optics Express, 2017, 25(20): 24531-24539. [7] LUO R, JIANG H W, LIANG H X, et al. Self-referenced temperature sensing with a lithium niobate microdisk resonator[J]. Optics Letters, 2017, 42(7): 1281-1284. [8] MERCANTE A J, YAO P, SHI S Y, et al. 110 GHz CMOS compatible thin film LiNbO3 modulator on silicon[J]. Optics Express, 2016, 24(14): 15590-15595. [9] SOLTANI M, ZHANG M, RYAN C, et al. Efficient quantum microwave-to-optical conversion using electro-optic nanophotonic coupled resonators[J]. Physical Review A, 2017, 96(4): 043808. [10] JAVERZAC-GALY C, PLEKHANOV K, BERNIER N R, et al. On-chip microwave-to-optical quantum coherent converter based on a superconducting resonator coupled to an electro-optic microresonator[J]. Physical Review A, 2016, 94(5): 053815. [11] HE L Y, ZHANG M, SHAMS-ANSARI A, et al. Low-loss fiber-to-chip interface for lithium niobate photonic integrated circuits[J]. Optics Letters, 2019, 44(9): 2314-2317. [12] KAR A, BAHADORI M, GONG S B, et al. Realization of alignment-tolerant grating couplers for z-cut thin-film lithium niobate[J]. Optics Express, 2019, 27(11): 15856-15867. [13] CHANG L, LI Y F, VOLET N, et al. Thin film wavelength converters for photonic integrated circuits[J]. Optica, 2016, 3(5): 531. [14] CAI L T, PIAZZA G. Low-loss chirped grating for vertical light coupling in lithium niobate on insulator[J]. Journal of Optics, 2019, 21(6): 065801. [15] LIU D N, FENG L S, JIA Y Z, et al. Heterogeneous integration of LN and Si3N4 waveguides using an optical interlayer coupler[J]. Optics Communications, 2019, 436: 1-6. [16] TAILLAERT D, VAN LAERE F, AYRE M, et al. Grating couplers for coupling between optical fibers and nanophotonic waveguides[J]. Japanese Journal of Applied Physics, 2006, 45(8A): 6071. [17] MEKIS A, GLOECKNER S, MASINI G, et al. A grating-coupler-enabled CMOS photonics platform[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(3): 597-608. [18] DING Y H, PEUCHERET C, OU H Y, et al. Fully etched apodized grating coupler on the SOI platform with-0.58 dB coupling efficiency[J]. Optics Letters, 2014, 39(18): 5348-5350. [19] BENEDIKOVIC D, CHEBEN P, SCHMID J H, et al. Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides[J]. Optics Express, 2015, 23(17): 22628-22635. [20] XU Y, XIAO J B. Compact and high extinction ratio polarization beam splitter using subwavelength grating couplers[J]. Optics Letters, 2016, 41(4): 773-776. [21] KRASNOKUTSKA I, CHAPMAN R J, TAMBASCO J L J, et al. High coupling efficiency grating couplers on lithium niobate on insulator[J]. Optics Express, 2019, 27(13): 17681-17685. [22] 冯新凯, 陈怀熹, 陈家颖, 等. 光纤耦合周期极化铌酸锂薄膜波导器件的研究[J]. 中国激光, 2023, 50(22): 3788/CJL230448. FENG X K, CHEN H X, CHEN J Y, et al. Study of fiber-coupled periodically poled lithium niobate thin film waveguide devices[J]. Chinese Journal of Lasers, 2023, 50(22): 3788/CJL230448 (in Chinese). [23] KANG S T, ZHANG R, HAO Z Z, et al. High-efficiency chirped grating couplers on lithium niobate on insulator[J]. Optics Letters, 2020, 45(24): 6651-6654. |