[1] JANOWITZ C, SCHERER V, MOHAMED M, et al. Experimental electronic structure of In2O3 and Ga2O3[J]. New Journal of Physics, 2011, 13(8): 085014. [2] HIGASHIWAKI M, SASAKI K, KURAMATA A, et al. Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates[J]. Applied Physics Letters, 2012, 100(1): 013504-013504-3. [3] KRISHNENDU G, UTTAM S. Ab initio velocity-field curves in monoclinic β-Ga2O3[J]. Journal of Applied Physics, 2017, 122(3): 35702. [4] MA N, TANEN N, VERMA A, et al. Intrinsic electron mobility limits in beta-Ga2O3[EB/OL]. 2016: arXiv: 1610.04198. http://arxiv.org/abs/1610.04198. [5] WU C, WU F M, HU H Z, et al. Work function tunable laser induced graphene electrodes for Schottky type solar-blind photodetectors[J]. Applied Physics Letters, 2022, 120(10): 101102. [6] WU C, WU F M, MA C Q, et al. A general strategy to ultrasensitive Ga2O3 based self-powered solar-blind photodetectors[J]. Materials Today Physics, 2022, 23(27): 100643. [7] ARDARAVIVCIUS L, MATULIONIS A, LIBERIS J, et al. Electron drift velocity in AlGaN/GaN channel at high electric fields[J]. Applied Physics Letters, 2003, 83(19): 4038. [8] LI K H, TORRES-CASTANEDO C G, SUNDARAM S, et al. Conduction and valence band offsets of Ga2O3/h-BN heterojunction[EB/OL]. 2019: arXiv: 1906.06891. http://arxiv.org/abs/1906.06891. [9] CHEN J X, TAO J J, MA H P, et al. Band alignment of AlN/β-Ga2O3 heterojunction interface measured by X-ray photoelectron spectroscopy[J]. Applied Physics Letters, 2018, 112(26):261602. [10] LYU S, PASQUARELLO A. Band alignment at β-Ga2O3/III-N (III=Al, Ga) interfaces through hybrid functional calculations[J]. Applied Physics Letters, 2020, 117(10): 102103. [11] ZHOU Z H, LI Q, HE X M. Studies on mechanism of electron transport in AlN/β-Ga2O3 heterostructures[J]. Journal of Semiconductors, 2023, 72(2): 9. [12] SINGH R, LENKA T, NGUYEN H. Analytical study of effect of energy band parameters and lattice temperature on conduction band offset in AlN/Ga2O3 HEMT[J]. Facta Universitatis, Series: Electronics and Energetics, 2021, 34(3): 323-332. [13] KUMAR S, SOMAN R, PRATIYUSH A S, et al. A performance comparison between β-Ga2O3 and GaN HEMTs[J]. IEEE Transactions on Electron Devices, 2019, 66(8): 3310-3317. [14] SINGH R, LENKA T R, NGUYEN H P T. Optimization of dynamic source resistance in a β-Ga2O3 HEMT and its effect on electrical characteristics[J]. Journal of Electronic Materials, 2020, 49(9): 5266-5271. [15] SINGH R, LENKA T, VELPULA R T, et al. A novel β-Ga2O3 HEMT with fT of 166 GHz and X-band POUT of 2.91 W/mm[J]. International Journal of Numerical Modelling Electronic Networks Devices and Fields, 2020, 34(12): 2794. [16] SINGH R, SINGH R, LENKA T R, et al. Investigation of current collapse and recovery time due to deep level defect traps in β-Ga2O3 HEMT[J]. Journal of Semiconductors, 2020, 41(10): 102802. [17] SINGH R, LENKA T R, NGUYEN H P T. 3D simulation study of laterally gated AlN/β-Ga2O3 HEMT technology for RF and high-power nanoelectronics[M]//HEMT Technology and Applications. Singapore: Springer Nature Singapore, 2022: 93-103. [18] SINGH R, LENKA T, NGUYEN H. T-Gate shaped AlN/β-Ga2O3 HEMT for RF and high power nanoelectronics[J]. International Journal of Numerical Modelling Electronic Networks Devices and Fields, 2021, DOI:10.36227/techrxiv.15023094.V1. [19] SINGH R, RAO G, LENKA T, et al. Design and simulation of T-gate AlN/β-Ga2O3 HEMT for DC, RF and high-power nanoelectronics switching applications[J]. International Journal of Numerical Modelling Electronic Networks Devices and Fields, 2023, 37(1): e3146. |