[1] TAKAHASHI T, WATANABE S. Recent progress in CdTe and CdZnTe detectors[J]. IEEE Transactions on Nuclear Science, 2001, 48(4): 950-959. [2] SELLIN P J. Recent advances in compound semiconductor radiation detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 513(1/2): 332-339. [3] 武 蕊, 范东海, 康 阳, 等. 半导体辐射探测材料与器件研究进展[J]. 人工晶体学报, 2021, 50(10): 1813-1829. WU R, FAN D H, KANG Y, et al. Research progress on semiconductor materials and devices for radiation detection[J]. Journal of Synthetic Crystals, 2021, 50(10): 1813-1829 (in Chinese). [4] SORDO S D, ABBENE L, CAROLI E, et al. Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications[J]. Sensors, 2009, 9(5): 3491-3526. [5] IWANCZYK J S, NYGARD E, MEIRAV O, et al. Photon counting energy dispersive detector arrays for X-ray imaging[C]//IEEE Transactions on Nuclear Science. IEEE, 2009: 535-542. [6] ROY U N, BURGER A, JAMES R B. Growth of CdZnTe crystals by the traveling heater method[J]. Journal of Crystal Growth, 2013, 379: 57-62. [7] XU Y D, JIE W Q, SELLIN P J, et al. Characterization of CdZnTe crystals grown using a seeded modified vertical Bridgman method[J]. IEEE Transactions on Nuclear Science, 2009, 56(5): 2808-2813. [8] SELLIN P J. Thick film compound semiconductors for X-ray imaging applications[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 563(1): 1-8. [9] BIE J Y, WANG S L, GUAN Y S, et al. Close-spaced sublimation of CdZnTe∶In films for solar energy water splitting[J]. Energy & Fuels, 2021, 35(9): 8234-8245. [10] YANG F, HUANG J, ZOU T Y, et al. The influence of surface processing on properties of CdZnTe films prepared by close-spaced sublimation[J]. Surface and Coatings Technology, 2019, 357: 575-579. [11] ÖZDEN S, KOC M M. Spectroscopic and microscopic investigation of MBE-grown CdTe (211)B epitaxial thin films on GaAs (211)B substrates[J]. Applied Nanoscience, 2018, 8(4): 891-903. [12] NIRAULA M, YASUDA K, KOJIMA M, et al. Development of large-area CdTe/n-Si epitaxial layer-based heterojunction diode-type gamma-ray detector arrays[J]. IEEE Transactions on Nuclear Science, 2018, 65(4): 1066-1069. [13] LI Y, CAO K, ZHA G Q, et al. An alternative GaSb substrate allowing close-spaced sublimation of Cd0.9Zn0.1Te epitaxial thick film for radiation detectors[J]. Materials Science in Semiconductor Processing, 2022, 147: 106688. [14] MACKENZIE J, KUMAR F J, CHEN H. Advancements in THM-grown CdZnTe for use as substrates for HgCdTe[J]. Journal of Electronic Materials, 2013, 42(11): 3129-3132. [15] 刘京明, 杨 俊, 赵有文, 等. GaSb单晶研究进展[J]. 人工晶体学报, 2024, 53(1): 1-11. LIU J M, YANG J, ZHAO Y W, et al. Research progress of GaSb single crystal[J]. Journal of Synthetic Crystals, 2024, 53(1): 1-11 (in Chinese). [16] 边子夫, 李 晖, 徐世海, 等. GaSb单晶片CMP工艺的研究[J]. 微纳电子技术, 2017, 54(11): 797-800. BIAN Z F, LI H, XU S H, et al. Research on the CMP process of the GaSb single crystal wafer[J]. Micronanoelectronic Technology, 2017, 54(11): 797-800 (in Chinese). [17] 冯银红, 沈桂英, 赵有文, 等. 无位错Te-GaSb(100)单晶抛光衬底的晶格完整性[J]. 人工晶体学报, 2022, 51(6): 1003-1011. FENG Y H, SHEN G Y, ZHAO Y W, et al. Lattice perfection of dislocation-free (100) Te-GaSb single crystal polished substrate[J]. Journal of Synthetic Crystals, 2022, 51(6): 1003-1011 (in Chinese). [18] 程 雨, 刘京明, 苏 杰, 等. GaSb晶片表面残留杂质分析[J]. 半导体光电, 2016, 37(1): 55-58. CHENG Y, LIU J M, SU J, et al. Residual impurities analysis on the surface of gallium antimonide wafers[J]. Semiconductor Optoelectronics, 2016, 37(1): 55-58 (in Chinese). [19] KODAMA M, RYOJI A, KIMATA M. Surface cleaning of GaSb (100) substrates for molecular-beam epitaxy[J]. Japanese Journal of Applied Physics, 1984, 23(12R): 1657. [20] 房 丹. GaSb薄膜及其超晶格结构的分子束外延生长与物性研究[D]. 长春: 长春理工大学, 2014. FANG D. Characterization of GaSb film and supperlattices grown by molecular beam epitaxy[D]. Changchun: Changchun University of Science and Technology, 2014 (in Chinese). [21] MCDONNELL S, BRENNAN B, BURSA E, et al. GaSb oxide thermal stability studied by dynamic-XPS[J]. Journal of Vacuum Science & Technology B, 2014, 32(4): 041201. [22] YU W, SULLIVAN J L, SAIED S O. XPS and LEISS studies of ion bombarded GaSb, InSb and CdSe surfaces[J]. Surface Science, 1996, 352/353/354: 781-787. [23] KIM Y K, LEE J Y, KIM H S, et al. An electron microscopy study on the formation mechanism of hillocks on the (100)CdTe/GaAs[J]. Journal of Crystal Growth, 1998, 192(1/2): 109-116. [24] KUMAR S, KAPOOR A K, NAGPAL A, et al. Effect of substrate dislocations on the Hg in-diffusion in CdZnTe substrates used for HgCdTe epilayer growth[J]. Journal of Crystal Growth, 2006, 297(2): 311-316. [25] GAO J N, JIE W Q, XIE Y, et al. Towards the cost effective epitaxy of hillocks free CdZnTe film on (001)GaAs by close-spaced sublimation[J]. Materials Letters, 2012, 78: 39-41. [26] GAO J N, JIE W Q, YUAN Y Y, et al. One-step fast deposition of thick epitaxial CdZnTe film on (001)GaAs by close-spaced sublimation[J]. CrystEngComm, 2012, 14(5): 1790-1794. |