[1] BLAKERS A. Development of the PERC solar cell[J]. IEEE Journal of Photovoltaics, 2019, 9(3): 629-635. [2] SCHMIDT J, ABERLE A G, HEZEL R. Investigation of carrier lifetime instabilities in CZ-grown silicon[C]//Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference. Anaheim, CA, USA. IEEE: 13-18. [3] TAO Y G, UPADHYAYA V, JONES K, et al. Tunnel oxide passivated rear contact for large area n-type front junction silicon solar cells providing excellent carrier selectivity[J]. AIMS Materials Science, 2016, 3(1): 180-189. [4] TAGUCHI M, YANO A, TOHODA S, et al. 24.7% record efficiency HIT solar cell on thin silicon wafer[J]. IEEE Journal of Photovoltaics, 2014, 4(1): 96-99. [5] SCHWARTZ R J, LAMMERT M D. Silicon solar cells for high concentration applications[C]//1975 International Electron Devices Meeting. Washington, DC, USA. IEEE, 2005: 350-352. [6] KOPECEK R, LIBAL J, LOSSEN J, et al. ZEBRA technology: low cost bifacial IBC solar cells in mass production with efficiency exceeding 23.5%[C]//2020 47th IEEE Photovoltaic Specialists Conference (PVSC). Calgary, AB, Canada. IEEE, 2020: 1008-1012. [7] LIU J J, YAO Y, XIAO S Q, et al. Review of status developments of high-efficiency crystalline silicon solar cells[J]. Journal of Physics D: Applied Physics, 2018, 51(12): 123001. [8] FAN X Y, RABELO M, HU Y F, et al. Factors affecting the performance of HJT silicon solar cells in the intrinsic and emitter layers: a review[J]. Transactions on Electrical and Electronic Materials, 2023, 24(2): 123-131. [9] LONG W, YIN S, PENG F G, et al. On the limiting efficiency for silicon heterojunction solar cells[J]. Solar Energy Materials and Solar Cells, 2021, 231: 111291. [10] LIU C F, CHEN D M, CHEN Y F, et al. Industrial TOPCon solar cells on n-type quasi-mono Si wafers with efficiencies above 23%[J]. Solar Energy Materials and Solar Cells, 2020, 215: 110690. [11] 席珍珍, 吴 翔, 屈小勇, 等. IBC太阳电池技术的研究进展[J]. 微纳电子技术, 2021, 58(5): 371-378+415. XI Z Z, WU X, QU X Y, et al. Research progress in interdigitated back contact solar cell technology[J]. Micronanoelectronic Technology, 2021, 58(5): 371-378+415 (in Chinese). [12] 郭永刚, 高嘉庆, 屈小勇, 等. n型叉指背接触太阳电池背面结构参数研究[J]. 微纳电子技术, 2020, 57(11): 865-870. GUO Y G, GAO J Q, QU X Y, et al. Research of the back side structure parameters of the n-type interdigitated back contact solar cell[J]. Micronanoelectronic Technology, 2020, 57(11): 865-870 (in Chinese). [13] 高嘉庆, 郭永刚, 屈小勇, 等. n型IBC太阳电池选择性发射极工艺研究[J]. 人工晶体学报, 2022, 51(11): 1929-1935. GAO J Q, GUO Y G, QU X Y, et al. Selective emitter technology of n-type IBC solar cells[J]. Journal of Synthetic Crystals, 2022, 51(11): 1929-1935 (in Chinese). [14] GAO J Q, QU X Y, GUO Y G, et al. Over 700 mV IBC solar cell by optimizing front surface field passivation[J]. IEEE Journal of Photovoltaics, 2023, 13(1): 56-60. [15] OKAMOTO C, KOIDE N, SUGIYAMA S, et al. Fabrication of 25.1% efficient hetero junction back contact Si solar cells by mass-production process[C]//2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC). Waikoloa, HI, USA. IEEE, 2018: 2052-2054. [16] BAO J H, TAO K, LIN Y R, et al. The n-type Si-based materials applied on the front surface of IBC-SHJ solar cells[J]. Chinese Physics B, 2019, 28(9): 098201. [17] PROCEL P, YANG G T, ISABELLA O, et al. Theoretical evaluation of contact stack for high efficiency IBC-SHJ solar cells[J]. Solar Energy Materials and Solar Cells, 2018, 186: 66-77. [18] YANG G T, ZHANG Y, PROCEL P, et al. Poly-Si(O)x passivating contacts for high-efficiency c-Si IBC solar cells[J]. Energy Procedia, 2017, 124: 392-399. [19] YOUNG D L, NEMETH W, LASALVIA V, et al. Ion implanted passivated contacts for interdigitated back contacted solar cells[C]//2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC). New Orleans, LA, USA. IEEE, 2015: 1-5. [20] GALLENI L, FıRAT M, RADHAKRISHNAN H S, et al. Mechanisms of charge carrier transport in polycrystalline silicon passivating contacts[J]. Solar Energy Materials and Solar Cells, 2021, 232: 111359. [21] PEIBST R, RÖMER U, LARIONOVA Y, et al. Working principle of carrier selective poly-Si/c-Si junctions: is tunnelling the whole story?[J]. Solar Energy Materials and Solar Cells, 2016, 158: 60-67. [22] O'NEILL A G. An explanation of the asymmetry in electron and hole tunnel currents through ultra-thin SiO2 films[J]. Solid-State Electronics, 1986, 29(3): 305-310. [23] YAMAMOTO T, UWASAWA K, MOGAMI T. Bias temperature instability in scaled p+ polysilicon gate p-MOSFET's[J]. IEEE Transactions on Electron Devices, 1999, 46(5): 921-926. [24] FELDMANN F, MÜLLER R, REICHEL C, et al. Ion implantation into amorphous Si layers to form carrier-selective contacts for Si solar cells[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2014, 8(9): 767-770. [25] 中国科学院宁波材料所. 25. 53% ! 中科院宁波材料所新型 TOPCon 电池实现新突破[EB/OL]. (2021-11-13)[2024-07-28]. https://www. sohu. com/a/500822817_595960. Ningbo Institute of materials, Chinese Academy of Sciences. 25. 53%! New breakthrough of novel TOPCon cells in Ningbo Institute of Materials, Chinese Academy of Sciences[EB/OL]. (2021-11-13)[2024-07-28].https://www. sohu. com/a/500822817_595960 (in Chinese). [26] RICHTER A, MÜLLER R, BENICK J, et al. Design rules for high-efficiency both-sides-contacted silicon solar cells with balanced charge carrier transport and recombination losses[J]. Nature Energy, 2021, 6: 429-438. [27] RÖMER U, PEIBST R, OHRDES T, et al. Ion implantation for poly-Si passivated back-junction back-contacted solar cells[J]. IEEE Journal of Photovoltaics, 2015, 5(2): 507-514. [28] LI Y P, YE F, LIU Y Q, et al. Research of annealing and boron doping on SiOx/p+-poly-Si hole-selective passivated contact[J]. IEEE Journal of Photovoltaics, 2020, 10(6): 1552-1556. [29] CHOI W J, JAIN A, HUANG Y Y, et al. Quantitative understanding and implementation of screen printed p poly-Si/oxide passivated contact to enhance the efficiency of p-PERC cells[C]//2020 47th IEEE Photovoltaic Specialists Conference (PVSC). Calgary, AB, Canada. IEEE, 2020: 821-824. [30] MACK S, SCHUBE J, FELLMETH T, et al. Metallisation of boron-doped polysilicon layers by screen printed silver pastes[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2017, 11(12): 1-4. |