[1] DONG H, XUE H W, HE Q M, et al. Progress of power field effect transistor based on ultra-wide bandgap Ga2O3 semiconductor material[J]. Journal of Semiconductors, 2019, 40(1): 011802. [2] PEARTON S J, YANG J C, CARY P H, et al. A review of Ga2O3 materials, processing, and devices[J]. Applied Physics Reviews, 2018, 5(1): 011301. [3] LIU Z, LI P G, ZHI Y S, et al. Review of gallium oxide based field-effect transistors and Schottky barrier diodes[J]. Chinese Physics B, 2019, 28(1): 017105. [4] MASTRO M A, KURAMATA A, CALKINS J, et al. Perspective—opportunities and future directions for Ga2O3[J]. ECS Journal of Solid State Science and Technology, 2017, 6(5): P356-P359. [5] 张 晋, 胡壮壮, 穆文祥, 等. 高质量氧化镓单晶及肖特基二极管的制备[J]. 人工晶体学报, 2020, 49(11): 2194-2199. ZHANG J, HU Z Z, MU W X, et al. High quality β-Ga2O3 single crystal and fabrication of Schottky diode[J]. Journal of Synthetic Crystals, 2020, 49(11): 2194-2199 (in Chinese). [6] 麻尧斌, 石 健, 赵聪鹏, 等. 全球氧化镓产业发展概况及对我国的启示[J]. 中国集成电路, 2023, 32(7): 12-16. MA Y B, SHI J, ZHAO C P, et al. Overview of global gallium oxide industry development and its enlightenment for China[J]. China Integrated Circuit, 2023, 32(7): 12-16 (in Chinese). [7] 汪海波, 万丽娟, 樊 敏, 等. 势垒可调的氧化镓肖特基二极管[J]. 物理学报, 2022, 71(3): 037301. WANG H B, WAN L J, FAN M, et al. Barrier-tunable gallium oxide Schottky diode[J]. Acta Physica Sinica, 2022, 71(3): 037301(in Chinese). [8] LI L, LIAO F, HU X T. The possibility of N-P codoping to realize P type β-Ga2O3[J]. Superlattices and Microstructures, 2020, 141: 106502. [9] CHOI J H, CHO C H, CHA H Y. Design consideration of high voltage Ga2O3 vertical Schottky barrier diode with field plate[J]. Results in Physics, 2018, 9: 1170-1171. [10] HU T C, WANG Z P, SUN N, et al. A self-aligned Ga2O3 heterojunction barrier Schottky power diode[J]. Applied Physics Reviews, 2023, 123(1): 013507. [11] HU Z Z, ZHAO C Y, FENG Q, et al. The investigation of β-Ga2O3 Schottky diode with floating field ring termination and the interface states[J]. ECS Journal of Solid State Science and Technology, 2020, 9(2): 025001. [12] JANG C H, ATMACA G, CHA H Y. Normally-off β-Ga2O3 MOSFET with an epitaxial drift layer[J]. Micromachines, 2022, 13(8): 1185. [13] JIAO T, CHEN W, LI Z D, et al. Fabrication of Ga2O3 Schottky barrier diode and heterojunction diode by MOCVD[J]. Materials, 2022, 15(23): 8280. [14] ALLEN N, XIAO M, YAN X D, et al. Vertical Ga2O3 Schottky barrier diodes with small-angle beveled field plates: a Baliga’s figure-of-merit of 0.6 GW/cm2[J]. IEEE Electron Device Letters, 2019, 40(9): 1399-1402. [15] WANG Y G, LV Y J, LONG S B, et al. High-voltage β-Ga2O3 vertical Schottky barrier diode with thermally-oxidized termination[J]. IEEE Electron Device Letters, 2020, 41(1): 131-134. [16] DONG P F, ZHANG J C, YAN Q L, et al. 6 kV/3.4 mΩ·cm2 vertical β-Ga2O3 Schottky barrier diode with BV2/Ron, sp performance exceeding 1-D unipolar limit of Gan and SiC[J]. IEEE Electron Device Letters, 2022, 43(5): 765-768. [17] LI J S, WAN H H, CHIANG C C, et al. NiO/Ga2O3 Vertical Rectifiers of 7 kV and 1 mm2 with 5.5 A Forward Conduction Current[J]. Crystals, 2023, 13(12): 1624. [18] ZHOU H, YAN Q L, ZHANG J C, et al. High-performance vertical β-Ga2O3 Schottky barrier diode with implanted edge termination[J]. IEEE Electron Device Letters, 2019, 40(11): 1788-1791. [19] YAO S H, YANG K M, YANG L L, et al. Investigation on β-Ga2O3-based Schottky barrier diode with floating metal rings[J]. Crystals, 2023, 13(4): 666. [20] CHEN H, WANG H Y, SHENG K. Vertical β-Ga2O3, Schottky barrier diodes with field plate assisted negative beveled termination and positive beveled termination[J]. IEEE Electron Device Letters, 2023, 44(1): 21-24. [21] MAEDA T, NARITA T, UEDA H, et al. Design and fabrication of GaN p-n junction diodes with negative beveled-mesa termination[J]. IEEE Electron Device Letters, 2019, 40(6): 941-944. [22] 龙 泽, 夏晓川, 石建军, 等. 基于机械剥离 β-Ga2O3的Ni/Au垂直结构肖特基器件的温度特性[J]. 物理学报, 2020, 69(13): 138501. LONG Z, XIA X C, SHI J J, et al. Temperature dependent characteristics of Ni/Au vertical Schottky diode based on mechanically exfoliated β-Ga2O3 single crystal[J]. Acta Physica Sinica, 2020, 69(13): 138501 (in Chinese). [23] ZHOU X, LI M, ZHANG J Z, et al. High quality P-type Mg-doped β-Ga2O3-δ films for solar-blind photodetectors[J]. IEEE Electron Device Letters, 2022, 43(4): 580-583. [24] 李京波, 盖艳琴, 康 俊, 等. 新型半导体深能级掺杂机制研究[J]. 科学通报, 2018, 63(4): 365-370. LI J B, GAI Y Q, KANG J, et al. Doping mechanism in novel semiconductor materials[J]. Chinese Science Bulletin, 2018, 63(4): 365-370 (in Chinese). [25] NANDI A, RANA K S, BAG A. Design and analysis of P-GaN/N-Ga2O3 based junction barrier Schottky diodes[J]. IEEE Transactions on Electron Devices, 2021, 68(12): 6052-6058. [26] DAVIS B E, STRANDWITZ N C. Dependence of the metal-insulator-semiconductor Schottky barrier height on insulator composition[J]. ACS Applied Electronic Materials, 2024, 6(2): 770-776. [27] JAMWAL N S, KIANI A. Gallium oxide nanostructures: a review of synthesis, properties and applications[J]. Nanomaterials, 2022, 12(12): 2061. [28] 郭亮良, 栾苏珍, 张弘鹏, 等. 垂直增强型氧化镓MOSFET器件自热效应研究[J]. 中国科学: 物理学 力学 天文学, 2022, 52(9): 75-84. GUO L L, LUAN S Z, ZHANG H P, et al. Study on self heating effect of enhancement-mode Ga2O3 vertical MOSFET[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2022, 52(9): 75-84 (in Chinese). [29] VAN OVERSTRAETEN R, MAN H D. Measurement of the ionization rates in diffused silicon p-n junctions[J]. Solid State Electronics, 1970, 13(5): 583-608. [30] STEFANAKIS D, MAKRIS N, ZEKENTES K, et al. Comparison of impact ionization models for 4H-SiC along the direction, through breakdown voltage simulations at room temperature[J]. IEEE Transactions on Electron Devices, 2021, 68(5): 2582-2586. [31] 王威礼, 王德煌, 让庆澜, 等. GaAs∶ Cr中深能级俘获效应对电导的影响[J]. 北京大学学报(自然科学版), 1991, 27(5): 599-607. WANG W L, WANG D H, RANG Q L, et al. GaAs∶Cr deep level trapping effect on conductivity[J]. Acta Scicentiarum Naturalum Universitis Pekinesis, 1991, 27(5): 599-607 (in Chinese). [32] KIM M Y, BYUN D W, LEE G H, et al. Schottky barrier heights and electronic transport in Ga2O3 Schottky diodes[J]. Materials Research Express, 2023, 10(7): 075902. [33] KIM H. Vertical Schottky contacts to bulk GaN single crystals and current transport mechanisms: a review[J]. Journal of Electronic Materials, 2021, 50(12): 6688-6707. [34] BALIGA B J. Fundamentals of power semiconductor devices[M]. Springer Science & Business Media, 2010. [35] MASE A, KUBO T, MIYOSHI M, et al. Improved reverse-bias breakdown behavior in fully-vertical GaN-on-Si Schottky barrier diodes with a thin AlN layer within the GaN drift layer[J]. Semiconductor Science and Technology, 2023, 38(9): 095005. |