1 |
WANG L, PENG M K, CHEN J R, et al. Eliminating the micropore confinement effect of carbonaceous electrodes for promoting Zn-ion storage capability[J]. Advanced Materials, 2022, 34(39): 2203744.
|
2 |
ZHOU M, GUO S, LI J L, et al. Surface-preferred crystal plane for a stable and reversible zinc anode[J]. Advanced Materials, 2021, 33(21): 2100187.
|
3 |
XU D M, REN X T, XU Y, et al. Highly stable aqueous zinc metal batteries enabled by an ultrathin crack-free hydrophobic layer with rigid sub-nanochannels[J]. Advanced Science, 2023, 10(27): 2303773.
|
4 |
邓致远, 李明珠, 方国赵, 等. 水系锌离子电池研究进展[J]. 硅酸盐学报, 2024, 52(2): 405-427.
|
|
DENG Z Y, LI M Z, FANG G Z, et al. Progress on aqueous zinc-ion batteries[J]. Journal of the Chinese Ceramic Society, 2024, 52(2): 405-427 (in Chinese).
|
5 |
YANG H J, CHANG Z, QIAO Y, et al. Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries[J]. Angewandte Chemie (International Ed), 2020, 59(24): 9377-9381.
|
6 |
ZHOU Y H, LI G Y, FENG S F, et al. Regulating Zn ion desolvation and deposition chemistry toward durable and fast rechargeable Zn metal batteries[J]. Advanced Science, 2023, 10(6): 2205874.
|
7 |
WEI J, ZHANG P B, SUN J J, et al. Advanced electrolytes for high-performance aqueous zinc-ion batteries[J]. Chemical Society Reviews, 2024, 53(20): 10335-10369.
DOI
PMID
|
8 |
SU L, LU F, LI Y R, et al. Gyroid liquid crystals as quasi-solid-state electrolytes toward ultrastable zinc batteries[J]. ACS Nano, 2024, 18(10): 7633-7643.
|
9 |
RUAN P C, LIANG S Q, LU B G, et al. Design strategies for high-energy-density aqueous zinc batteries[J]. Angewandte Chemie (International Ed), 2022, 61(17): e202200598.
|
10 |
LAI C Y, LIAO Y S, KU H Y, et al. Enhancing zinc electrode stability through pre-desolvation and accelerated charge transfer via a polyimide interface for zinc-ion batteries[J]. Small, 2024, 20(35): 2401713.
|
11 |
LIU X, MA Q X, WANG J H, et al. A biomimetic polymer-based composite coating inhibits zinc dendrite growth for high-performance zinc-ion batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(8): 10384-10393.
|
12 |
LI B, LIU S D, GENG Y F, et al. Achieving stable zinc metal anode via polyaniline interface regulation of Zn ion flux and desolvation[J]. Advanced Functional Materials, 2024, 34(5): 2214033.
|
13 |
刘雨秋, 杨 娟, 李 欣, 等. 水系锌离子电池LaF3涂层对锌负极的改性研究[J]. 人工晶体学报, 2024, 53(6): 1078-1085.
|
|
LIU Y Q, YANG J, LI X, et al. Study on the modification of zinc anode with LaF3 coating in aqueous zinc-ion batteries[J]. Journal of Synthetic Crystals, 2024, 53(6): 1078-1085 (in Chinese).
|
14 |
CHEN M J, CUI Y M, LIU W F, et al. Ti4O7 coating creates a highly stable Zn anode for aqueous zinc-ion batteries[J]. Inorganic Chemistry Frontiers, 2024, 11(15): 4748-4756.
|
15 |
CAI Z J, WANG J P, LIAN S T, et al. Regulating the Zn electrode/electrolyte interface toward high stability-insights from the resting time impact on Zn electrode performance[J]. Advanced Functional Materials, 2024: 2401367.
|
16 |
LI H Y, LI S J, HOU R L, et al. Recent advances in zinc-ion dehydration strategies for optimized Zn-metal batteries[J]. Chemical Society Reviews, 2024, 53(15): 7742-7783.
DOI
PMID
|
17 |
YUAN W T, NIE X Y, WANG Y Y, et al. Orientational electrodeposition of highly (002)-textured zinc metal anodes enabled by iodide ions for stable aqueous zinc batteries[J]. ACS Nano, 2023, 17(23): 23861-23871.
|
18 |
YANG X Z, DONG Z X, WENG G, et al. Crystallographic manipulation strategies toward reversible Zn anode with orientational deposition[J]. Advanced Energy Materials, 2024, 14(25): 2401293.
|
19 |
ZHAO Z D, WANG R, PENG C X, et al. Horizontally arranged zinc platelet electrodeposits modulated by fluorinated covalent organic framework film for high-rate and durable aqueous zinc ion batteries[J]. Nature Communications, 2021, 12(1): 6606.
DOI
PMID
|
20 |
XU D M, WANG Z, LIU C J, et al. Water catchers within sub-nano channels promote step-by-step zinc-ion dehydration enable highly efficient aqueous zinc-metal batteries[J]. Advanced Materials, 2024, 36(26): 2403765.
|
21 |
WANG L P, ZHANG B, ZHOU W H, et al. Tandem chemistry with Janus mesopores accelerator for efficient aqueous batteries[J]. Journal of the American Chemical Society, 2024, 146(9): 6199-6208.
|
22 |
WANG C W, HUANG J F, QI H, et al. Controlling pseudographtic domain dimension of dandelion derived biomass carbon for excellent sodium-ion storage[J]. Journal of Power Sources, 2017, 358: 85-92.
|
23 |
JIAN W B, ZHANG W L, WEI X E, et al. Engineering pore nanostructure of carbon cathodes for zinc ion hybrid supercapacitors[J]. Advanced Functional Materials, 2022, 32(49): 2209914.
|
24 |
ZHENG J X, ZHAO Q, TANG T, et al. Reversible epitaxial electrodeposition of metals in battery anodes[J]. Science, 2019, 366(6465): 645-648.
DOI
PMID
|
25 |
HAN D L, WU S C, ZHANG S W, et al. A corrosion-resistant and dendrite-free zinc metal anode in aqueous systems[J]. Small, 2020, 16(29): 2001736.
|
26 |
DU H R, ZHAO R R, YANG Y, et al. High-capacity and long-life zinc electrodeposition enabled by a self-healable and desolvation shield for aqueous zinc-ion batteries[J]. Angewandte Chemie (International Ed), 2022, 61(10): 202114789.
|
27 |
LI X, LI Y, ZHAO X, et al. Elucidating the charge storage mechanism of high-performance vertical graphene cathodes for zinc-ion hybrid supercapacitors[J]. Energy Storage Materials, 2022, 53: 505-513.
|
28 |
MAO K, SHI J J, ZHANG Q X, et al. High-capacitance MXene anode based on Zn-ion pre-intercalation strategy for degradable micro Zn-ion hybrid supercapacitors[J]. Nano Energy, 2022, 103: 107791.
|