[1] Toyoda T, Sato J, Shen Q. Effect of sensitization by quantum-sized CdS on photoacoustic and hotoelectrochemical current spectra of porous TiO2 electrodes[J]. Review of Scientific Instruments, 2003, 74(1): 297. [2] Zhao W H, Wei Z Q, Zhang L, et al. Cr doped SnS2 nanoflowers: preparation, characterization and photocatalytic decolorization[J]. Materials Science in Semiconductor Processing, 2018, 88: 173-180. [3] Sudhaik A, Raizada P, Shandilya P, et al. Review on fabrication of graphitic carbon nitride based efficient nanocomposites for photodegradation of aqueous phase organic pollutants[J]. Journal of Industrial and Engineering Chemistry, 2018, 67: 28-51. [4] Zhao W H, Wei Z Q, He Y J, et al. Fluorescence emission and ferromagnetic of Zn0.97-xNi0.03CoxS nanorods synthesized via a hydrothermal route[J]. Journal of Electronic Materials, 2019, 48(10): 6807-6814. [5] Miklos D B, Remy C, Jekel M, et al. Evaluation of advanced oxidation processes for water and wastewater treatment—a critical review[J]. Water Research, 2018, 139: 118-131. [6] Zhao W H, Wei Z Q, Ma L, et al. Ag2S quantum dots based on flower-like SnS2 as matrix and enhanced photocatalytic degradation[J]. Materials, 2019, 12(4): 582. [7] Ma Y, Wang X L, Jia Y S, et al. Titanium dioxide-based nanomaterials for photocatalytic fuel generations[J]. Chemical reviews, 2014, 114(19): 9987-10043. [8] Hisatomi T, Kubota J, Domen K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting[J]. Chemical Society Reviews, 2014, 43(22): 7520-7535. [9] Kumar S, Mehta S K. Varying. Photoluminescence emission of CdS nanoparticles in aqueous medium: a comparative study on effect of surfactant structure[J]. Nano-Structures & Nano-Objects, 2015, 2: 1-10. [10] Yan X, Wu Z Y, Huang C, et al. Hydrothermal synthesis of CdS/CoWO4, heterojunctions with enhanced visible light properties toward organic pollutants degradation[J]. Ceramics International, 2017, 43(7): 5388-5395. [11] Fan K, Liao C, Xu R, et al. Effect of shell thickness on electrochemical property of wurtzite CdSe/CdS core/shell nanocrystals[J]. Chemical Physics Letters, 2015, 633: 1-5. [12] 杜 欢,王 晟,刘恋恋,等.复合半导体光催化剂p-CoO/n-CdS的制备、表征及光催化性能[J].物理化学学报,2010,26(10): 2726-2732. [13] Yang F, Yan N N, Huang S, et al. Zn-Doped CdS nanoarchitectures prepared by hydrothermal synthesis:mechanism for enhanced photocatalytic activity and stability under visible light[J]. The Journal of Physical Chemistry C, 2012, 116(16): 9078-9084. [14] Mohanta D, Choudhury A. Frequency dependent electrical properties of nano-CdS/Ag junctions[J]. European Physical Journal B, 2005, 45(1): 63-68. [15] Meng N, Zhou Y, Nie W, et al. Synthesis of CdS-decorated RGO nanocomposites by reflux condensation method and its improved photocatalytic activity[J]. Journal of Nanoparticle Research, 2016, 18(8): 241. [16] Zhang L, Niu C G, Wen X J, et al. Enhanced photocatalytic activity of CdS/SnS2, nanocomposite with highly-efficient charge transfer and visible light utilization for selective reduction of 4-nitroaniline[J]. Journal of Colloid & Interface Science, 2018, 532: 557-570. [17] Patel J D, Vu T D, Mighri F. Preparation and characterization of CdS coated multiwalled carbon nanotubes[J]. Materials Letters, 2017, 196: 161-164. [18] Wang F, Liang L, Chen K, et al. CO2, induced template approach to fabricate the porous C/CdS visible photocatalyst with superior activity and stability[J]. Journal of Molecular Catalysis A Chemical, 2016, 425: 76-85. [19] Zhou M, Hu Y, Liu Y, et al. Microwave-assisted route to fabricate coaxial ZnO/C/CdS nanocables with enhanced visible light-driven photocatalytic activity[J]. Cryst Eng Comm, 2012, 14(22): 7686-7693. [20] Liu Y, Yu Y X, Zhang W D. Carbon quantum dots-doped CdS microspheres with enhanced photocatalytic performance[J]. Journal of Alloys & Compounds, 2013, 569(9): 102-110. [21] Pan Q, Huang K, Ni S, et al. Fabrication and photoluminescence properties of large-scale hierarchical CdS dendrites[J]. Materials Letters, 2007, 61(26): 4773-4776. [22] Xie K, Wu Q, Wang Y, et al. Electrochemical construction of z-scheme type CdS-Ag-TiO2 nanotube arrays with enhanced photocatalytic activity[J]. Electrochemistry Communications, 2011, 13(12): 1469-1472. [23] Ramsden J J, Webber S E, Graetzel M. Luminescence of colloidal cadmium sulfide particles in acetonitrile and acetonitrile/water mixtures[J]. Journal of Physical Chemistry, 1985, 89(13): 2740-2743. [24] Yan Y X, Yang H, Yi Z, et al. Evolution of Bi nanowires from BiOBr nanoplates through a NaBH4 reduction method with enhanced photodegradation performance[J]. Environmental Engineering Science, 2020, 37(1): 64-77. [25] Yang H, Jin Z, Wang G, et al. Light-assisted synthesis MoSx as a noble metal free cocatalyst formed heterojunction CdS/Co3O4 photocatalyst for visible light harvesting and spatial charge separation[J]. Dalton Transactions, 2018, 47(20): 6973-6985. [26] Xiao F X, Miao J, Liu B. Layer-by-layer self-assembly of CdS quantum dots/graphene nanosheets hybrid films for photoelectrochemical and photocatalytic applications[J]. Journal of the American Chemical Society, 2014, 136(4): 1559-1569. |