[1] Zheng Y Z, Zhou G J, Zheng Z, et al. Molecule-based magnetic coolers[J]. Chemical Society Reviews, 2014, 43(5): 1462-1475. [2] Evangelisti M, Luis F, De Jongh L J, et al. Magnetothermal properties of molecule-based materials[J]. Journal of Materials Chemistry, 2006, 16(26): 2534-2549. [3] Han Y, Han S D, Pan J, et al. An excellent cryogenic magnetic cooler: magnetic and magnetocaloric study of an inorganic frame material[J]. Materials Chemistry Frontiers, 2018, 2(12): 2327-2332. [4] 时鹏飞, 熊 刚, 张战运, 等. 分子基低温磁制冷材料的研究进展[J]. 中国科学: 化学, 2013, 43(10): 1262-1271. [5] Liu J L, Chen Y C, Guo F S, et al. Recent advances in the design of magnetic molecules for use as cryogenic magnetic coolants[J]. Coordination Chemistry Reviews, 2014, 281: 26-49. [6] 郭富盛, 陈龑骢, 刘俊良, 等.磁性配合物的超低温磁制冷行为研究[C]// 中国化学会第六届全国结构化学学术会议论文摘要,2012. [7] 韩松德, 刘遂军, 章应辉, 等.钆基分子基低温磁制冷材料的最新研究进展[J]. 中国稀土学报, 2017, 35(1): 101-112. [8] Tishin A M, Spichkin Y I. The Magnetocaloric effect and its application[M]. IOP Publishing, Bristol and Philadelphia, 2003. [9] Sessoli R, Gatteschi D, Villain J. Molecular nano-magnets[M]. Oxford University Press, Oxford, UK, 2006. [10] 侯银玲. 新型配位聚合物的合成及光、磁性能研究[D].天津:天津大学, 2014. [11] 王 磊. 钆基低温磁制冷无机化合物的研究进展[J].广州化学,2016,41(3): 62-69. [12] 郑腾飞, 刘遂军. 二元羧酸桥联的稀土配位聚合物的构筑与磁热性质研究[C]//第十四届固态化学与无机合成学术会议论文集,天津,2016. [13] Qiu J Z, Chen Y C, Wang L F, et al. The effect of magnetic coupling on magneto-caloric behaviour in two 3D Gd-glycolate coordination polymers[J]. Inorganic Chemistry Frontiers, 2016, 3(1): 150-156. [14] Liu S J, Cao C, Xie C C, et al. Tricarboxylate-based GdIII coordination polymers exhibiting large magnetocaloric effects[J]. Dalton Trans, 2016, 45(22): 9209-9215. [15] Lorusso G, Natividad E, Evangelisti M, et al. Growth of a dense gadolinium metal-organic framework on oxide-free silicon for cryogenic local refrigeration[J]. Materials Horizons, 2019, 6(1): 144-154. [16] 李志猛, 胡 军, 智 霞,等.[Gd(BMBCP)(H2O)4][PMo12O40]·2.75H2O配位聚合物的合成及表征[J].人工晶体学报, 2017, 46(5):809-813, 824. [17] Liu S J, Han S D, Zhao J P, et al. In-situ synthesis of molecular magnetorefrigerant materials[J]. Coordination Chemistry Reviews, 2019, 394: 39-52. [18] Peng J B, Kong X J, Zhang Q C, et al. Beauty, symmetry, and magnetocaloric effect-four-shell keplerates with 104 lanthanide atoms[J]. Journal of the American Chemical Society, 2014, 136(52): 17938-17941. [19] Dong J, Cui P, Shi P F, et al. Ultrastrong alkali-resisting lanthanide-zeolites assembled by [Ln60] nanocages[J]. Journal of the American Chemical Society, 2015, 137(51): 15988-15991. [20] Guo F S, Leng J D, Liu J L, et al. Polynuclear and polymeric gadolinium acetate derivatives with large magnetocaloric effect[J]. Inorganic Chemistry, 2012, 51(1): 405-413. [21] Lorusso G, Palacios M A, Nichol G S, et al. Increasing the dimensionality of cryogenic molecular coolers: Gd-based polymers and metal-organic frameworks[J]. Chemical Communications, 2012, 48(61): 7592-7594. [22] Meng Y, Chen Y C, Zhang Z M, et al. Gadolinium oxalate derivatives with enhanced magnetocaloric effect via ionothermal synthesis[J]. Inorganic Chemistry, 2014, 53(17): 9052-9057. [23] Biswas S, Adhikary A, Goswami S, et al. Observation of a large magnetocaloric effect in a 2D Gd(III)-based coordination polymer[J]. Dalton Transactions, 2013, 42(37): 13331-13334. [24] Liu S J, Cao C, Yao S L, et al. Temperature- and vapor-induced reversible single-crystal-to-single-crystal transformations of three 2D/3D GdIII-organic frameworks exhibiting significant magnetocaloric effects[J]. Dalton Transactions, 2016, 46(1): 64-70. [25] Han S D, Li J H, Liu H H, et al. Two hybrid lanthanide complexes exhibiting a large magnetocaloric effect and slow magnetic relaxation[J]. Dalton Transactions, 2017, 46(30): 10023-10028. [26] Song T Q, Dong J, Yang A F, et al. Wheel-like Ln18 cluster organic frameworks for magnetic refrigeration and conversion of CO2[J]. Inorganic Chemistry, 2018, 57(6): 3144-3150. [27] Li Z Y, Wang F F, Zhu P Y, et al. One trans-aconitate-based two-dimensional Gd(III) polymer displaying large magnetocaloric effect[J]. Inorganic Chemistry Communications, 2020. doi: https://doi.org/10.1016/j.inoche.2020.108166. [28] Sedláková L, Hanko J, Orendáová A, et al. Magnetism and magnetocaloric effect in S=7/2 Heisenberg antiferromagnet Gd2(fum)3(H2O)4·3-H2O[J]. Journal of Alloys & Compounds, 2009, 487(1): 425-429. [29] Sibille R, Mazet T, Malaman B, et al. A metal-organic framework as attractive cryogenic magnetorefrigerant[J]. Chemistry-A European Journal, 2012, 18(41): 12970-12973. [30] Lorusso G, Sharples J W, Palacios E, et al. A dense metal-organic framework for enhanced magnetic refrigeration[J]. Advanced Materials, 2013, 25(33): 4653-4656. [31] Chen Y C, Guo F S, Zheng Y Z, et al. Gadolinium(III)-hydroxy ladders trapped in succinate frameworks with optimized magnetocaloric effect[J]. Chemistry-A European Journal, 2013, 19(40): 13504-13510. [32] Biswas S, Mondal A K, Konar S. Densely packed lanthanide cubane based 3 d metal-organic frameworks for efficient magnetic refrigeration and slow magnetic relaxation[J]. Inorganic Chemistry, 2016, 55(5): 2085-2090. [33] Li J, Liu A J, Ma Y J, et al. A large magnetocaloric effect in two hybrid Gd-complexes: the synergy of inorganic and organic ligands towards excellent cryo-magnetic coolants[J]. Journal of Materials Chemistry C, 2019, 7: 6352-6358. [34] Das C, Upadhyay A, Ansari K U, et al. Lanthanide-based porous coordination polymers: syntheses, slow relaxation of magnetization, and magnetocaloric effect[J]. Inorganic Chemistry, 2018, 57(11): 6584-6598. |