[1] CAMMARATA A, ZHANG W, HALASYAMANI P S, et al. Microscopic origins of optical second harmonic generation in noncentrosymmetric-nonpolar materials[J]. Chem Mater, 2014, 26(19):5773-5781. [2] HALASYAMANI P S, POEPPELMEIER K R. Noncentrosymmetric oxides[J]. Chem Mater, 1998, 10(10): 2753-2769. [3] NAVROTSKY A. Energetics and crystal chemical systematics among ilmenite, lithium niobate, and perovskite structures[J]. Chem Mater, 1998, 10(10): 2787-2793. [4] INAGUMA Y, YOSHIDA M, TSUCHIYA T, et al. High-pressure synthesis of novel lithium niobate-type oxides[C]. J Phys Conf Ser IOP Publishing, 2010, 215(1): 012131. [5] INAGUMA Y, AIMI A, SHIRAKO Y, et al. High-pressure synthesis, crystal structure, and phase stability relations of a LiNbO3-type polar titanate ZnTiO3 and its reinforced polarity by the second-order Jahn-Teller effect[J]. J Am Chem Soc, 2014, 136(7): 2748-2756. [6] RUIZ-FUERTES J, WINKLER B, BERNERT T, et al. Ferroelectric soft mode of polar ZnTiO3 investigated by Raman spectroscopy at high pressure[J]. Phys Rev B, 2015, 91(21): 214110. [7] ZHANG J, XU B, WANG Y S, et al. First-principles investigation of the ferroelectric, piezoelectric and nonlinear optical properties of LiNbO3-type ZnTiO3[J]. Sci Rep, 2019, 9(1):17632. [8] LI X, XIONG J, HUANG J, et al. Novel g-C3N4/h′ ZnTiO3-a′ TiO2 direct Z-scheme heterojunction with significantly enhanced visible-light photocatalytic activity[J]. J Alloys Compd, 2019, 774: 768-778. [9] PHANI A R, PASSACANTANDO M, SANTUCCI S. Synthesis of nanocrystalline ZnTiO3 perovskite thin films by sol-gel process assisted by microwave irradiation[J]. J Phys Chem Solids, 2007, 68(3): 317-323. [10] YE C, PAN S S, TENG X M, et al. Preparation and optical properties of nanocrystalline thin films in the ZnO-TiO2 system[J]. Appl Phys A, 2008, 90(2): 375-378. [11] YAN Y, GAO H, TIAN J, et al. Ferromagnetic Enhancement in ZnTiO3 films induced by Co doping[J]. Ceram Int, 2019, 45(9): 11309-11315. [12] WATTANAWIKKAM C, KANSAARD T, PECHARAPA W, et al. X-ray absorption spectroscopy analysis and photocatalytic behavior of ZnTiO3 nanoparticles doped with Co and Mn synthesized by sonochemical method[J]. Appl Surf Sci, 2019: 169-176 [13] KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys Rev B, 1996, 54(16): 11169. [14] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18): 3865. [15] DUDAREV S L, BOTTON G A, SAVRASOV S Y, et al. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+ U study [J]. Phys Rev B, 1998, 57(3): 1505. [16] EDERER C, SPALDIN N A. Origin of ferroelectricity in the multiferroic barium fluorides BaMF4: a first principles study[J]. P Phys Rev B, 2006, 74(2):024102. [17] EDERER C, HARRIS T, ROMAN KOVÁCIK. Mechanism of ferroelectric instabilities in non-d0 perovskites: LaCrO3 versus CaMnO3[J]. Phys Rev B, 2011, 83(5):054110. [18] BECKE A D, JOHNSON E R. A simple effective potential for exchange [J]. J Chem Phys, 2006, 124(22):221101. [19] TRAN F, BLAHA P. Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential [J]. Phys Rev Lett, 2009, 102(22): 226401. [20] SHI J, GUO L. ABO3-based photocatalysts for water splitting[J]. Progress in Natural Science: Materials International, 2012, 22(6): 592-615. [21] YUN J N, YIN T, ZHANG Z Y. First-principles calculation of the electronic structure of SrTiO3[C]. Advanced Materials Research. Trans Tech Publications Ltd, 2013, 750: 1199-1202. |