欢迎访问《人工晶体学报》官方网站,今天是 分享到:

人工晶体学报 ›› 2021, Vol. 50 ›› Issue (2): 209-243.

• 特邀综述 •    下一篇

氧化锌单晶生长、载流子调控与应用研究进展

黄丰, 郑伟, 王梦晔, 何佳庆, 程璐, 李悌涛, 徐存华, 戴叶婧, 李宇强   

  1. 中山大学材料学院,国家光电材料与技术国家重点实验室,广州 510000
  • 收稿日期:2020-12-28 发布日期:2021-03-24
  • 作者简介:黄 丰(1972—),男,福建省人,博士,教授。E-mail:huangfeng@mail.sysu.edu.cn;黄丰(1972—),中山大学材料学院院长、教授、博士生导师。中国真空学会第八、九届理事;中国电子学会电子材料专业分会委员和脉冲星导航专家委员会常务委员;中国物理学会粉末衍射专业委员会委员和固体缺陷专业委员会委员。长期致力于半导体材料生长中的热力学与生长动力学研究。首次实验证明了晶态材料和液相界面存在负的界面自由能,对材料科学根基性的相图、相律理论形成挑战。该理念对宽禁带半导体生长和载流子调控有重要的普适性意义,实现禁带>3 eV的高迁移率p型CuI单晶和迄今最高迁移率(236 cm2/(V·s))的n型ZnO单晶生长;其中重掺ZnO(1.07×1019/cm3)已实现2英寸晶圆批量生产,打破发达国家垄断,成功应用于反冲质子超快诊断、快中子检测等多项重大国防任务。在包括Phys Rev Lett、J Am Chem Soc、Adv Mater、Angew Chem Int Ed、Nature、Science、Nano Lett等发表论文170 余篇,其中IF>10的18篇,他引>5 000。申请专利37项,授权12项。承担国家杰青、国家自然重大研究计划集成和重点项目、海峡联合基金重点、军科委基础加强项目、总装重点、科技部973等项目共1.07亿元。获“新世纪百千万人才工程”国家级人选、政府特殊津贴、国家创新人才推进计划-中青年领军人才,以及广东特支计划领军人才、中国化学会青年化学奖等奖励。
  • 基金资助:
    国家自然科学基金重大研究计划(91833301)

Development of Zinc Oxide: Bulk Crystal Growth, Arbitrary Regulation of Carrier Concentration and Practical Applications

HUANG Feng, ZHENG Wei, WANG Mengye, HE Jiaqing, CHENG Lu, LI Titao, XU Cunhua, DAI Yejing, LI Yuqiang   

  1. State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials, Sun Yat-sen University, Guangzhou 510000, China
  • Received:2020-12-28 Published:2021-03-24

摘要: 氧化锌(ZnO)是一种历史悠久的材料,由于其微观结构非中心对称,最初被预测可以应用于压电和非线性光学领域,又因为它在室温下具有宽的禁带和高的激子束缚能,是一类重要的第三代宽禁带半导体材料,在半导体领域受到了广泛关注。然而,在实际应用中,ZnO在上述各个领域都遇到了一些瓶颈问题:在压电领域,原本被认为是绝缘的ZnO出现了意外的导电性;在非线性光学领域,ZnO的折射率差很小,难以获得好的相位匹配;在半导体领域,难以同时获得高载流子浓度、高迁移率、高热稳定性的p型ZnO。本文主要针对以上ZnO的应用前景及相关瓶颈问题进行了总结,并提出了适用于离子型化合物半导体的载流子调控普适性理论,即:载流子类型完全由材料的精细化学组分完整表达式来决定。这一规则将原本被认为是无关的材料精细化学组分完整表达式和载流子类型两个概念联系起来,在认识上具有很大的突破,并形成了材料科学研究的新范式。该范式成功指导了高绝缘和高热稳定性的n型ZnO单晶以及高迁移率掺Al∶ZnO薄膜的生长,并为高载流子浓度、高迁移率、高热稳定性p型ZnO的制备提供了新思路。近来,除了上述应用领域外,ZnO还被发现在超快闪烁体和中红外(MIR)透明导电窗口领域具有较大的应用贡献,并推测这些领域很可能领先于ZnO原本受到重视的研究领域而取得真正的应用进展。

关键词: 氧化锌, 水热法, 载流子自由调控, p型ZnO, 超快闪烁体, 中红外透明导电

Abstract: Zinc oxide (ZnO) possesses a long history. It was initially predicted to be used in the fields of piezoelectrics and nonlinear optics because of its non-centrosymmetric microstructure. And it is an important wide-bandgap semiconductor material that has received extensive attention in the semiconductor field due to its direct wide band gap (Eg~3.3 eV at 300 K) and large exciton binding energy (~60 meV). However, in practical applications, ZnO has encountered some bottlenecks in all above-mentioned fields. For example, in the field of piezoelectrics, ZnO was originally thought to be an insulator, but it shows unexpected conductivity. In the field of nonlinear optics, the refractive index difference of ZnO is very poor, so it is difficult to obtain good phase matching. In the field of semiconductor, it is difficult to obtain p-type ZnO with high carrier concentration, high mobility, and high thermal stability at the same time. This article mainly summarizes the application prospects and corresponding bottlenecks of ZnO in the above-mentioned fields. And a theory that can be understood by both semiconductor physicists and materials scientists is proposed. Specifically, chemical composition complete expression (CCCE) uniquely determines the conduction type of materials. As a novel knowledge, this connects the two concepts of CCCE and carrier type, which makes a great breakthrough in understanding and forms a new paradigm for materials science research. Under this guidance, n-type ZnO single crystals with high insulation and high thermal stability, Al∶ZnO thin films with high mobility were successfully manufactured. And it provides a new idea for the preparation of p-type ZnO with high carrier concentration, high mobility and high thermal stability. Recently, the native ZnO bulk crystal has been found to have a new possibility of breaking the bottleneck of MIR transparent conductivity. ZnO∶Ga crystal scintillators are also identified as promising ultrafast inorganic scintillators. It is speculated that these two fields would achieve progress in practical applications.

Key words: ZnO, hydrothermal method, arbitrary regulation of carrier concentration, p-type ZnO, ultrafast scintillator, MIR transparent conducting

中图分类号: