人工晶体学报 ›› 2021, Vol. 50 ›› Issue (2): 209-243.
• 特邀综述 • 下一篇
黄丰, 郑伟, 王梦晔, 何佳庆, 程璐, 李悌涛, 徐存华, 戴叶婧, 李宇强
收稿日期:
2020-12-28
发布日期:
2021-03-24
作者简介:
黄 丰(1972—),男,福建省人,博士,教授。E-mail:huangfeng@mail.sysu.edu.cn;黄丰(1972—),中山大学材料学院院长、教授、博士生导师。中国真空学会第八、九届理事;中国电子学会电子材料专业分会委员和脉冲星导航专家委员会常务委员;中国物理学会粉末衍射专业委员会委员和固体缺陷专业委员会委员。长期致力于半导体材料生长中的热力学与生长动力学研究。首次实验证明了晶态材料和液相界面存在负的界面自由能,对材料科学根基性的相图、相律理论形成挑战。该理念对宽禁带半导体生长和载流子调控有重要的普适性意义,实现禁带>3 eV的高迁移率p型CuI单晶和迄今最高迁移率(236 cm2/(V·s))的n型ZnO单晶生长;其中重掺ZnO(1.07×1019/cm3)已实现2英寸晶圆批量生产,打破发达国家垄断,成功应用于反冲质子超快诊断、快中子检测等多项重大国防任务。在包括Phys Rev Lett、J Am Chem Soc、Adv Mater、Angew Chem Int Ed、Nature、Science、Nano Lett等发表论文170 余篇,其中IF>10的18篇,他引>5 000。申请专利37项,授权12项。承担国家杰青、国家自然重大研究计划集成和重点项目、海峡联合基金重点、军科委基础加强项目、总装重点、科技部973等项目共1.07亿元。获“新世纪百千万人才工程”国家级人选、政府特殊津贴、国家创新人才推进计划-中青年领军人才,以及广东特支计划领军人才、中国化学会青年化学奖等奖励。
基金资助:
HUANG Feng, ZHENG Wei, WANG Mengye, HE Jiaqing, CHENG Lu, LI Titao, XU Cunhua, DAI Yejing, LI Yuqiang
Received:
2020-12-28
Published:
2021-03-24
摘要: 氧化锌(ZnO)是一种历史悠久的材料,由于其微观结构非中心对称,最初被预测可以应用于压电和非线性光学领域,又因为它在室温下具有宽的禁带和高的激子束缚能,是一类重要的第三代宽禁带半导体材料,在半导体领域受到了广泛关注。然而,在实际应用中,ZnO在上述各个领域都遇到了一些瓶颈问题:在压电领域,原本被认为是绝缘的ZnO出现了意外的导电性;在非线性光学领域,ZnO的折射率差很小,难以获得好的相位匹配;在半导体领域,难以同时获得高载流子浓度、高迁移率、高热稳定性的p型ZnO。本文主要针对以上ZnO的应用前景及相关瓶颈问题进行了总结,并提出了适用于离子型化合物半导体的载流子调控普适性理论,即:载流子类型完全由材料的精细化学组分完整表达式来决定。这一规则将原本被认为是无关的材料精细化学组分完整表达式和载流子类型两个概念联系起来,在认识上具有很大的突破,并形成了材料科学研究的新范式。该范式成功指导了高绝缘和高热稳定性的n型ZnO单晶以及高迁移率掺Al∶ZnO薄膜的生长,并为高载流子浓度、高迁移率、高热稳定性p型ZnO的制备提供了新思路。近来,除了上述应用领域外,ZnO还被发现在超快闪烁体和中红外(MIR)透明导电窗口领域具有较大的应用贡献,并推测这些领域很可能领先于ZnO原本受到重视的研究领域而取得真正的应用进展。
中图分类号:
黄丰, 郑伟, 王梦晔, 何佳庆, 程璐, 李悌涛, 徐存华, 戴叶婧, 李宇强. 氧化锌单晶生长、载流子调控与应用研究进展[J]. 人工晶体学报, 2021, 50(2): 209-243.
HUANG Feng, ZHENG Wei, WANG Mengye, HE Jiaqing, CHENG Lu, LI Titao, XU Cunhua, DAI Yejing, LI Yuqiang. Development of Zinc Oxide: Bulk Crystal Growth, Arbitrary Regulation of Carrier Concentration and Practical Applications[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(2): 209-243.
[1] IZYUMSKAYA N, AVRUTIN V, ÖZGÜR Ü, et al. Preparation and properties of ZnO and devices[J]. Physica Status Solidi (b), 2007, 244(5): 1439-1450. [2] ABRAHAMS S C, BERNSTEIN J L. Remeasurement of the structure of hexagonal ZnO[J]. Acta Crystallographica Section B, 1969, 25(7): 1233-1236. [3] WANG G, KIEHNE G T, WONG G K L, et al. Large second harmonic response in ZnO thin films[J]. Applied Physics Letters, 2002, 80(3): 401-403. [4] HUANG F, LIN Z, LIN W W, et al. Research progress in ZnO single-crystal: growth, scientific understanding, and device applications[J]. Chinese Science Bulletin, 2014, 59(12): 1235-1250. [5] OKA K, SHIBATA H, KASHIWAYA S. Crystal growth of ZnO[J]. Journal of Crystal Growth, 2002, 237/238/239: 509-513. [6] KLEBER W, MLODOCH R. Über Die Synthese von Zinkit-Einkristallen[J]. Kristall Und Technik, 1966, 1(2): 249-259. [7] CHASE A B, OSMER J A. Localized cooling in flux crystal growth[J]. Journal of the American Ceramic Society, 1967, 50(6): 325-328. [8] WANKLYN B M. The growth of ZnO crystals from phosphate and vanadate fluxes[J]. Journal of Crystal Growth, 1970, 7(1): 107-108. [9] NIELSEN J W, DEARBORN E F. The growth of large single crystals of zinc oxide[J]. The Journal of Physical Chemistry, 1960, 64(11): 1762-1763. [10] SHILOH M, GUTMAN J. Growth of ZnO single crystals by chemical vapour transport[J]. Journal of Crystal Growth, 1971, 11(2): 105-109. [11] PIEKARCZYK W, GAZDA S, NIEMYSKI T. The growth of zinc oxide crystals by chemical transport method[J]. Journal of Crystal Growth, 1972, 12(4): 272-276. [12] MATSUMOTO K, KONEMURA K, SHIMAOKA G. Crystal growth of ZnO by vapor transport in a closed tube using Zn and ZnCl2 as transport agents[J]. Journal of Crystal Growth, 1985, 71(1): 99-103. [13] MATSUMOTO K, SHIMAOKA G. Crystal growth of ZnO by chemical transport[J]. Journal of Crystal Growth, 1988, 86(1/2/3/4): 410-414. [14] MATSUMOTO K, NODA K. Crystal growth of ZnO by chemical transport using HgCl2 as a transport agent[J]. Journal of Crystal Growth, 1990, 102(1/2): 137-140. [15] MULLIN J B, MACEWAN W R, HOLLIDAY C H, et al. Pressure balancing: a technique for suppressing dissociation during the melt-growth of compounds[J]. Journal of Crystal Growth, 1972, 13/14: 629-634. [16] REYNOLDS D C, LITTON C W, LOOK D C, et al. High-quality, melt-grown ZnO single crystals[J]. Journal of Applied Physics, 2004, 95(9): 4802-4805. [17] NAUSE J, NEMETH B. Pressurized melt growth of ZnO boules[J]. Semiconductor Science and Technology, 2005, 20(4): S45-S48. [18] HELBIG R. Über Die züchtung von grösseren reinen und dotierten ZnO-kristallen aus der gasphase[J]. Journal of Crystal Growth, 1972, 15(1): 25-31. [19] OHSHIMA E, OGINO H, NIIKURA I, et al. Growth of the 2-in-size bulk ZnO single crystals by the hydrothermal method[J]. Journal of Crystal Growth, 2004, 260(1/2): 166-170. [20] HUTSON A R. Piezoelectricity and conductivity in ZnO and CdS[J]. Physical Review Letters, 1960, 4(10): 505. [21] KO H J, CHEN Y F, HONG S K, et al. Ga-doped ZnO films grown on GaN templates by plasma-assisted molecular-beam epitaxy[J]. Applied Physics Letters, 2000, 77(23): 3761-3763. [22] REYNOLDS D C, COLLINS T C. Excited terminal states of a bound exciton-donor complex in ZnO[J]. Physical Review, 1969, 185(3): 1099. [23] GUTOWSKI, PRESSER, BROSER. Acceptor-exciton complexes in ZnO: a comprehensive analysis of their electronic states by high-resolution magnetooptics and excitation spectroscopy[J]. Physical Review B, Condensed Matter, 1988, 38(14): 9746-9758. [24] BLATTNER G, KLINGSHIRN C, HELBIG R, et al. The influence of a magnetic field on the ground and excited states of bound exciton complexes in ZnO[J]. Physica Status Solidi (b), 1981, 107(1): 105-115. [25] BAGNALL D M, CHEN Y F, ZHU Z, et al. Optically pumped lasing of ZnO at room temperature[J]. Applied Physics Letters, 1997, 70(17): 2230-2232. [26] OHTA H, KAWAMURA K I, ORITA M, et al. Current injection emission from a transparent p-n junction composed of p-SrCu2O2/n-ZnO[J]. Applied Physics Letters, 2000, 77(4): 475-477.[LinkOut] [27] TSUKAZAKI A, OHTOMO A, ONUMA T, et al. Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO[J]. Nature Materials, 2005, 4(1): 42-46. [28] TSUKAZAKI A, OHTOMO A, KAWASAKI M. Blue-light-emitting diodes based on ZnO[J]. Oyo Buturi, 2005, 74(10): 1359-64. [29] RAIMONDI D L, KAY E. High resistivity transparent ZnO thin films[J]. Journal of Vacuum Science and Technology, 1970, 7(1): 96-99. [30] WANG Z L, SONG J H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays[J]. Science, 2006, 312(5771): 242-246. [31] PARK C H, ZHANG S B, WEI S H. Origin ofp-type doping difficulty in ZnO: the impurity perspective[J]. Physical Review B, 2002, 66(7): 073202. [32] LOOK D C, CLAFLIN B. P-type doping and devices based on ZnO[J]. Physica Status Solidi (b), 2004, 241(3): 624-630. [33] LU J G, ZHANG Y Z, YE Z Z, et al. Low-resistivity, stable p-type ZnO thin films realized using a Li-N dual-acceptor doping method[J]. Applied Physics Letters, 2006, 88(22): 222114. [34] YUAN G D, ZHANG W J, JIE J S, et al. P-type ZnO nanowire arrays[J]. Nano Letters, 2008, 8(8): 2591-2597. [35] PAN Z W, DAI Z R, WANG Z L. Nanobelts of semiconducting oxides[J]. Science, 2001, 291(5510): 1947-1949. [36] KONG X Y, DING Y, YANG R S, et al. Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts[J]. Science, 2004, 303(5662): 1348-1351. [37] HUGHES W L, WANG Z L. Controlled synthesis and manipulation of ZnO nanorings and nanobows[J]. Applied Physics Letters, 2005, 86(4): 043106. [38] LIM Y S, PARK J W, HONG S T, et al. Carbothermal synthesis of ZnO nanocomb structure[J]. Materials Science and Engineering: B, 2006, 129(1/2/3): 100-103. [39] GAO P X, DING Y, MAI W J, et al. Conversion of zinc oxide nanobelts into superlattice-structured nanohelices[J]. Science, 2005, 309(5741): 1700-1704. [40] GAO P X, WANG Z L. High-yield synthesis of single-crystal nanosprings of ZnO[J]. Small, 2005, 1(10): 945-949. [41] WANG Z L. Splendid one-dimensional nanostructures of zinc oxide: a new nanomaterial family for nanotechnology[J]. ACS Nano, 2008, 2(10): 1987-1992. [42] GAO P X, WANG Z L. Self-assembled nanowire-nanoribbon junction arrays of ZnO[J]. The Journal of Physical Chemistry B, 2002, 106(49): 12653-12658. [43] HE J H, HO C H, WANG C W, et al. Growth of crossed ZnO nanorod networks induced by polar substrate surface[J]. Crystal Growth & Design, 2009, 9(1): 17-19. [44] WANG X D, DING Y, LI Z, et al. Single-crystal mesoporous ZnO thin films composed of nanowalls[J]. The Journal of Physical Chemistry C, 2009, 113(5): 1791-1794. [45] WANG X, SONG J, LIU J, et al. Direct-current nanogenerator driven by ultrasonic waves[J]. Science, 2007, 316(5821): 102-105. [46] WANG X D, LIU J, SONG J H, et al. Integrated nanogenerators in biofluid[J]. Nano Letters, 2007, 7(8): 2475-2479. [47] WANG X D, GAO Y F, WEI Y G, et al. Output of an ultrasonic wave-driven nanogenerator in a confined tube[J]. Nano Research, 2009, 2(3): 177-182. [48] QIN Y, WANG X D, WANG Z L. Microfibre-nanowire hybrid structure for energy scavenging[J]. Nature, 2008, 451(7180): 809-813. [49] YANG R, QIN Y, DAI L, et al. Power generation with laterally packaged piezoelectric fine wires[J]. Nature Nanotechnology, 2009, 4(1): 34-39. [50] NAKAMURA S, SENOH M, IWASA N, et al. Superbright green InGaN single-quantum-well-structure light-emitting diodes[J]. Japanese Journal of Applied Physics, 1995, 34(Part 2, No. 10B): L1332-L1335. [51] YU P, TANG Z K, WONG G K, et al. Room temperature stimulated emission from ZnO quantum dot films[J]. Proc 23rd Inter Conf on the Physics of Semiconductor. World Scientific, Singapore, 1996, 2: 1453-1456. [52] TANG Z K, WONG G K L, YU P, et al. Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films[J]. Applied Physics Letters, 1998, 72(25): 3270-3272. [53] SERVICE R F. Will UV lasers beat the blues?[J]. Science, 1997, 276(5314): 895. [54] TANIYASU Y, KASU M, MAKIMOTO T. An aluminium nitride light-emitting diode with a wavelength of 210 nanometres[J]. Nature, 2006, 441(7091): 325-328. [55] GIBART P. Metal organic vapour phase epitaxy of GaN and lateral overgrowth[J]. Reports on Progress in Physics, 2004, 67(5): 667-715. [56] CHOI J H, ZOULKARNEEV A, KIM S I, et al. Nearly single-crystalline GaN light-emitting diodes on amorphous glass substrates[J]. Nature Photonics, 2011, 5(12): 763-769. [57] SHEN D Z, MEI Z X, LIANG H L, et al. ZnO-based matierial, heterojunction and photoelectronic device[J]. Chinese Journal of Luminescence, 2014, 35(1): 0001b. [58] HOPFIELD J J, THOMAS D G. On some observable properties of longitudinal excitons[J]. Journal of Physics and Chemistry of Solids, 1960, 12(3/4): 276-284. [59] REYNOLDS D C, LITTON C W, COLLINS T C. Zeeman effects in the edge emission and absorption of ZnO[J]. Physical Review, 1965, 140(5A): a1726. [60] TOMZIG E, HELBIG R. Band-edge emission in ZnO[J]. Journal of Luminescence, 1976, 14(3): 403-415. [61] DAMEN T C, PORTO S P S, TELL B. Raman effect in zinc oxide[J]. Physical Review, 1966, 142(2): 570. [62] ARGUELLO C A, ROUSSEAU D L, PORTO S P S. First-order Raman effect in wurtzite-type crystals[J]. Physical Review, 1969, 181(3): 1351. [63] ASHKENOV N, MBENKUM B N, BUNDESMANN C, et al. Infrared dielectric functions and phonon modes of high-quality ZnO films[J]. Journal of Applied Physics, 2003, 93(1): 126-133. [64] LAVROV E V. Infrared absorption spectroscopy of hydrogen-related defects in ZnO[J]. Physica B: Condensed Matter, 2003, 340/341/342: 195-200. [65] LAVROV E V, WEBER J, BÖRRNERT F, et al. Hydrogen-related defects in ZnO studied by infrared absorption spectroscopy[J]. Physical Review B, 2002, 66(16): 165205. [66] MCCLUSKEY M D, JOKELA S J, ZHURAVLEV K K, et al. Infrared spectroscopy of hydrogen in ZnO[J]. Applied Physics Letters, 2002, 81(20): 3807-3809. [67] ÖZGÜR, ALIVOV Y I, LIU C, et al. A comprehensive review of ZnO materials and devices[J]. Journal of Applied Physics, 2005, 98(4): 041301. [68] CUSCÓ R, ALARCÓN-LLADÓ E, IBÁÑEZ J, et al. Temperature dependence of Raman scattering in ZnO[J]. Physical Review B, 2007, 75(16): 165202. [69] LI T T, WANG M Y, LIU X L, et al. Hydrogen impurities in ZnO: shallow donors in ZnO semiconductors and active sites for hydrogenation of carbon species[J]. The Journal of Physical Chemistry Letters, 2020, 11(7): 2402-2407. [70] LIN W W, CHEN D G, ZHANG J Y, et al. Hydrothermal growth of ZnO single crystals with high carrier mobility[J]. Crystal Growth & Design, 2009, 9(10): 4378-4383. [71] LAUDISE R A, BALLMAN A A. Hydrothermal synthesis of zinc oxide and zinc sulfide[J]. The Journal of Physical Chemistry, 1960, 64(5): 688-691. [72] LAUDISE R A, KOLB E D, CAPORASO A J. Hydrothermal growth of large sound crystals of zinc oxide[J]. Journal of the American Ceramic Society, 1964, 47(1): 9-12. [73] SEKIGUCHI T, MIYASHITA S, OBARA K, et al. Hydrothermal growth of ZnO single crystals and their optical characterization[J]. Journal of Crystal Growth, 2000, 214/215: 72-76. [74] DILEO L, ROMANO D, SCHAEFFER L, et al. Effect of complexing agent on hydrothermal growth of ZnO crystals[J]. Journal of Crystal Growth, 2004, 271(1/2): 65-73. [75] DEMIANETS L N, KOSTOMAROV D V, KUZ’MINA I P, et al. Mechanism of growth of ZnO single crystals from hydrothermal alkali solutions[J]. Crystallography Reports, 2002, 47(1): S86-S98. [76] EHRENTRAUT D, SATO H, KAGAMITANI Y, et al. Solvothermal growth of ZnO[J]. Progress in Crystal Growth and Characterization of Materials, 2006, 52(4): 280-335. [77] DEM’YANETS L N, LYUTIN V I. Status of hydrothermal growth of bulk ZnO: latest issues and advantages[J]. Journal of Crystal Growth, 2008, 310(5): 993-999. [78] ZHANG C L, ZHOU W N, HANG Y, et al. Hydrothermal growth and characterization of ZnO crystals[J]. Journal of Crystal Growth, 2008, 310(7/8/9): 1819-1822. [79] NTEP J M, SAID HASSANI S, LUSSON A, et al. ZnO growth by chemical vapour transport[J]. Journal of Crystal Growth, 1999, 207(1/2): 30-34. [80] CHENG L, ZHU S, ZHENG W, et al. Ultra-wide spectral range (0.4-8 μm) transparent conductive ZnO bulk single crystals: a leading runner for mid-infrared optoelectronics[J]. Materials Today Physics, 2020, 14: 100244. [81] LIN W W, DING K, LIN Z, et al. The growth and investigation on Ga-doped ZnO single crystals with high thermal stability and high carrier mobility[J]. Cryst Eng Comm, 2011, 13(10): 3338-3341. [82] ZHENG W, LIN R C, ZHANG D, et al. Vacuum-ultraviolet photovoltaic detector with improved response speed and responsivity via heating annihilation trap state mechanism[J]. Advanced Optical Materials, 2018, 6(21): 1800697. [83] HUANG F, ZHU S, WANG F, et al. Can we transform any insulators into semiconductors? theory, strategy, and example in ZnO[J]. Matter, 2020, 2(5): 1091-1105. [84] JIN M G, LI Z B, HUANG F, et al. Critical conditions for the formation of p-type ZnO with Li doping[J]. RSC Advances, 2018, 8(54): 30868-30874. [85] HIRAMATSU H, OHTA H, SUZUKI T, et al. Mechanism for heteroepitaxial growth of transparent P-type semiconductor: LaCuOS by reactive solid-phase epitaxy[J]. Crystal Growth & Design, 2004, 4(2): 301-307. [86] Look D C, Leedy K D, Tomich D H, et al. Mobility analysis of highly conducting thin films:application to ZnO[J]. Applied Physics Letters, 2010, 96(6): 062102. [87] MASUDA Y, KONDO M, KOUMOTO K. Site-selective deposition of In2O3 using a self-assembled monolayer[J]. Crystal Growth & Design, 2009, 9(1): 555-561. [88] MINAMI T. Transparent conducting oxide semiconductors for transparent electrodes[J]. Semiconductor Science and Technology, 2005, 20(4): S35-S44. [89] IGASAKI Y, SAITO H. Substrate temperature dependence of electrical properties of ZnO∶Al epitaxial films on sapphire (12-10)[J]. Journal of Applied Physics, 1991, 69(4): 2190-2195. [90] PEI Z L, SUN C, TAN M H, et al. Optical and electrical properties of direct-current magnetron sputtered ZnO∶Al films[J]. Journal of Applied Physics, 2001, 90(7): 3432-3436. [91] CHAMBERS S A. Epitaxial growth and properties of doped transition metal and complex oxide films[J]. Advanced Materials, 2010, 22(2): 219-248. [92] KIM H, GILMORE C M, HORWITZ J S, et al. Transparent conducting aluminum-doped zinc oxide thin films for organic light-emitting devices[J]. Applied Physics Letters, 2000, 76(3): 259-261. [93] LU J G, YE Z Z, ZENG Y J, et al. Structural, optical, and electrical properties of (Zn, Al)O films over a wide range of compositions[J]. Journal of Applied Physics, 2006, 100(7): 073714. [94] LIU H F, CHUA S J, HU G X, et al. Effects of substrate on the structure and orientation of ZnO thin film grown by rf-magnetron sputtering[J]. Journal of Applied Physics, 2007, 102(8): 083529. [95] ZHAN Z B, ZHANG J Y, ZHENG Q H, et al. Strategy for preparing Al-doped ZnO thin film with high mobility and high stability[J]. Crystal Growth & Design, 2011, 11(1): 21-25. [96] JI X, CHEN L, XU M X, et al. Crystal imperfection modulation engineering for functionalization of wide band gap semiconductor radiation detector[J]. Advanced Electronic Materials, 2018, 4(2): 1700307. [97] LI T T, ZHU Y M, JI X, et al. Experimental evidence on stability of N substitution for O in ZnO lattice[J]. The Journal of Physical Chemistry Letters, 2020, 11(20): 8901-8907. [98] GRÜNEBOOM A, KLING L, CHRISTIANSEN S, et al. Next-generation imaging of the skeletal system and its blood supply[J]. Nature Reviews Rheumatology, 2019, 15(9): 533-549. [99] HACHADORIAN R L, BRUZA P, JERMYN M, et al. Imaging radiation dose in breast radiotherapy by X-ray CT calibration of Cherenkov light[J]. Nature Communications, 2020, 11(1): 2298. [100] BLASSE G. Scintillator materials[J]. Chemistry of Materials, 1994, 6(9): 1465-1475. [101] RODNYI P A, DORENBOS P, VAN EIJK C W E. Energy loss in inorganic scintillators[J]. Physica Status Solidi (b), 1995, 187(1): 15-29. [102] XU L J, LIN X S, HE Q Q, et al. Highly efficient eco-friendly X-ray scintillators based on an organic manganese halide[J]. Nature Communications, 2020, 11: 4329. [103] CHO S, KIM S, KIM J, et al. Hybridisation of perovskite nanocrystals with organic molecules for highly efficient liquid scintillators[J]. Light: Science & Applications, 2020, 9: 156. [104] THIRIMANNE H M, JAYAWARDENA K D G I, PARNELL A J, et al. High sensitivity organic inorganic hybrid X-ray detectors with direct transduction and broadband response[J]. Nature Communications, 2018, 9(1): 2926. [105] ZHAO J J, ZHAO L, DENG Y H, et al. Perovskite-filled membranes for flexible and large-area direct-conversion X-ray detector arrays[J]. Nature Photonics, 2020, 14(10): 612-617. [106] ARNFIELD M R, GABALLA H E, ZWICKER R D, et al. Radiation-induced light in optical fibers and plastic scintillators: application to brachytherapy dosimetry[J]. IEEE Transactions on Nuclear Science, 1996, 43(3): 2077-2084. [107] LAVAL M, MOSZYN'SKI M, ALLEMAND R, et al. Barium fluoride—inorganic scintillator for subnanosecond timing[J]. Nuclear Instruments and Methods in Physics Research, 1983, 206(1/2): 169-176. [108] VAN LOEF E V D, DORENBOS P, VAN EIJK C W E, et al. High-energy-resolution scintillator: Ce3+ activated LaCl3[J]. Applied Physics Letters, 2000, 77(10): 1467-1468. [109] MOSZYNSKI M, KAPUSTA M, WOLSKI D, et al. Energy resolution of scintillation detectors readout with large area avalanche photodiodes and photomultipliers[J]. IEEE Transactions on Nuclear Science, 1998, 45(3): 472-477. [110] SAKAI E J. Recent measurements on scintillator-photodetector systems[J]. IEEE Transactions on Nuclear Science, 1987, 34(1): 418-422. [111] LEHMANN W. Edge emission of n-type conducting ZnO and CdS[J]. Solid-State Electronics, 1966, 9(11/12): 1107-1110. [112] SOWIAK M M, ROSS D A. Exposure characteristics of thin window cathode ray tubes on electrofax papers[J]. Applied Optics, 1969, 8(Suppl 1): 88-90. [113] LUCKEY D. A fast inorganic scintillator[J]. Nuclear Instruments and Methods, 1968, 62(1): 119-120. [114] BATSCH T, BENGTSON B, MOSZY$\acute{И}$SKI M. Timing properties of a ZnO(Ga) scintillator (NE843)[J]. Nuclear Instruments and Methods, 1975, 125(3): 443-446. [115] XU M X, CHEN L, LIU B, et al. Effects of photonic crystal structures on the imaging properties of a ZnO∶Ga image converter[J]. Optics Letters, 2018, 43(22): 5647-5650. [116] LIN Y C, CHEN T Y, WANG L C, et al. Comparison of AZO, GZO, and AGZO thin films TCOs applied for a-Si solar cells[J]. Journal of the Electrochemical Society, 2012, 159(6): H599-H604. [117] RUSKE F, PFLUG A, SITTINGER V, et al. Optical modeling of free electron behavior in highly doped ZnO films[J]. Thin Solid Films, 2009, 518(4): 1289-1293. [118] STEINHAUSER J, FA S, OLIVEIRA N, et al. Transition between grain boundary and intragrain scattering transport mechanisms in boron-doped zinc oxide thin films[J]. Applied Physics Letters, 2007, 90(14): 142107. [119] CALDWELL J D, LINDSAY L, GIANNINI V, et al. Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons[J]. Nanophotonics, 2015, 4(1): 44-68. [120] BARKER A S. Transverse and longitudinal optic mode study in MgF2 and ZnF2[J]. Physical Review, 1964, 136(5A): a1290. [121] FAN H Y, SPITZER W, COLLINS R J. Infrared absorption in n-type germanium[J]. Physical Review, 1956, 101(2): 566. [122] YANG X C. Electrical and optical properties of zinc oxide for scintillator applications[D]. West Virginia: West Virginia University, 2008. DOI:10.33915/etd.2729. [123] WALUKIEWICZ W, LAGOWSKI L, JASTRZEBSKI L, et al. Electron mobility and free-carrier absorption in GaAs: determination of the compensation ratio[J]. Journal of Applied Physics, 1979, 50(2): 899-908. [124] BAER W S. Free-carrier absorption in reduced SrTiO3[J]. Physical Review, 1966, 144(2): 734. |
[1] | 林晓霞, 李慧, 付德刚. 还原氧化石墨烯/TiO2纳米线复合膜的制备及对Cu2+吸附性的影响[J]. 人工晶体学报, 2021, 50(2): 318-324. |
[2] | 王建超, 杨光慧, 唐格格, 麻明友, 彭华勇. 导电聚苯胺线膜修饰ZnO纳米棒阵列的可控制备及其紫外探测性能[J]. 人工晶体学报, 2021, 50(1): 88-93. |
[3] | 周传仓;张飞鹏;吴红玉;苗义高;冯巧;杜玲枝;秦国强;张光磊. 纳米针阵列多孔材料3D CoP@CC的制备与电催化析氢性能研究[J]. 人工晶体学报, 2020, 49(9): 1673-1677. |
[4] | 郭慧;刘方华;付翔;李香兰;彭小英;冯胜雷. 水热法制备Mn掺杂ZnO及其光催化性能研究[J]. 人工晶体学报, 2020, 49(9): 1699-1704. |
[5] | 赵瑨云;苏丽鳗;徐婕;刘俊劭;穆寄林;胡家朋;林皓;付兴平;刘瑞来. Ce-La@Fe3O4吸附剂制备及其除氟性能研究[J]. 人工晶体学报, 2020, 49(9): 1705-1710. |
[6] | 赵瑨云;徐婕;穆寄林;胡家朋;林皓;付兴平;刘瑞来. 磁性Fe3O4@TiO2/ZnO的制备及光催化性能研究[J]. 人工晶体学报, 2020, 49(7): 1223-1228. |
[7] | 党君惠;梅大江;吴远东. 典型非线性光学晶体生长方法综述[J]. 人工晶体学报, 2020, 49(7): 1308-1319. |
[8] | 马志军;郑云生;赵海涛;莽昌烨. 水热法制备纳米Co0.5Zn0.5Fe2O4工艺条件试验研究[J]. 人工晶体学报, 2020, 49(5): 876-880. |
[9] | 田柱;李雪渊;肖岩;王变;孙学勤;尤东江;刘影;朱建辉;高峰;康利涛. 水热法制备铝掺杂二氧化锰及其储锌性能的研究[J]. 人工晶体学报, 2020, 49(4): 651-658. |
[10] | 时晓磊;陆晓芳;苏莉;顾士甲;周蓓莹;王连军;江莞. 不同表面活性剂制备n型Bi2Te3热电材料[J]. 人工晶体学报, 2020, 49(4): 677-683. |
[11] | 车致远;王鑫伟;陈昊;张伟;苏适;马晋文. Cu∶CdS/TiO2的制备及其光电化学性能研究[J]. 人工晶体学报, 2020, 49(3): 428-432. |
[12] | 陈婷;任玉磊;徐彦乔;江莞;江伟辉;张筱君;谢志翔. 水热法合成Cu-In-Zn-S量子点及其荧光性能研究[J]. 人工晶体学报, 2020, 49(3): 446-451. |
[13] | 奚羽;郑国源;吴彩红;王吉林;王燕舞;龙飞;邹正光. 高分散镁铝层状双氢氧化物的煅烧改性及其对甲基橙的吸附性能研究[J]. 人工晶体学报, 2020, 49(3): 532-541. |
[14] | 夏冬林;郭锦华;秦可. 钇掺杂多孔结构氧化锌纳米棒的制备与性能研究[J]. 人工晶体学报, 2020, 49(2): 264-269. |
[15] | 黄妙龄;杨一泓;骆杰烽;陈英. 配合物2[NiL2(H2O)2]·DMF的合成、晶体结构与荧光性质的研究[J]. 人工晶体学报, 2020, 49(2): 276-280. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||