[1] POP E, SINHA S, GOODSON K E. Heat generation and transport in nanometer-scale transistors[J]. Proceedings of the IEEE, 2006, 94(8): 1587-1601. [2] MAHAJAN R, CHIU C P, CHRYSLER G. Cooling amicroprocessor chip[J]. Proceedings of the IEEE, 2006, 94(8): 1476-1486. [3] HAMANN H F, WEGER A, LACEY J A, et al. Hotspot-limited microprocessors: direct temperature and power distribution measurements[J]. IEEE Journal of Solid-State Circuits, 2007, 42(1): 56-65. [4] WEI L, KUO P K, THOMAS R L, et al. Thermal conductivity of isotopically modified single crystal diamond[J]. Physical Review Letters, 1993, 70(24): 3764-3767. [5] BALANDIN AA, GHOSH S, BAO W Z, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8(3): 902-907. [6] PERRI J A, LA PLACA S, POST B. New group III-group V compounds: BP and BAs[J]. Acta Crystallographica, 1958, 11(4): 310. [7] LINDSAY L, BROIDO D A, REINECKE T L. First-principles determination of ultrahigh thermal conductivity of boron arsenide: a competitor for diamond?[J]. Physical Review Letters, 2013, 111(2): 025901. [8] BROIDO D A, LINDSAY L, REINECKE T L. Ab initiostudy of the unusual thermal transport properties of boron arsenide and related materials[J]. Physical Review B, 2013, 88(21): 214303. [9] KANG J S, LI M, WU H, et al. Experimental observation of high thermal conductivity in boron arsenide[J]. Science, 2018, 361(6402): 575-578. [10] TIAN F, SONG B, LV B, et al. Seeded growth of boron arsenide single crystals with high thermal conductivity[J]. Applied Physics Letters, 2018, 112(3): 031903. [11] LI S, ZHENG Q Y, LV Y, et al. High thermal conductivity in cubic boron arsenide crystals[J]. Science, 2018, 361(6402): 579-581. [12] OSUGI J, SHIMIZU K, TANAKA Y, et al. Preparation and chemical properties of cubic boron arsenide, BAs[EB/OL]. [13] ARMINGTON A F. Vapor transport of boron, boron phosphide and boron arsenide[J]. Journal of Crystal Growth, 1967, 1(1): 47-48. [14] LV B, LAN Y C, WANG X Q, et al. Experimental study of the proposedsuper-thermal-conductor: BAs[J]. Applied Physics Letters, 2015, 106(7): 074105. [15] MA H, LI C, TANG S X, et al. Boron arsenide phonon dispersion from inelastic X-ray scattering: potential for ultrahigh thermal conductivity[J]. Physical Review B, 2016, 94(22): 220303. [16] PROTIK N H, CARRETE J, KATCHO N A, et al. Abinitiostudy of the effect of vacancies on the thermal conductivity of boron arsenide[J]. Physical Review B, 2016, 94(4): 045207. [17] ZHENG Q, POLANCO C A, DU M H, et al.Antisite pairs suppress the thermal conductivity of BAs[J]. Physical Review Letters, 2018, 121(10): 105901. [18] KIM J, EVANS D A, SELLAN D P, et al. Thermal and thermoelectric transport measurements of an individual boron arsenide microstructure[J]. Applied Physics Letters, 2016, 108(20): 201905. [19] FENG T L, LINDSAY L, RUAN X L. Four-phonon scattering significantly reduces intrinsic thermal conductivity of solids[J]. Physical Review B, 2017, 96(16): 161201. [20] TIAN F, SONG B,CHEN X, et al. Unusual high thermal conductivity in boron arsenide bulk crystals[J]. Science, 2018, 361(6402): 582-585. [21] GAMAGE G A, CHEN K, CHEN G, et al. Effect of nucleation sites on the growth and quality of single-crystal boron arsenide[J]. Materials Today Physics, 2019, 11: 100160. [22] ZIYAEE H, GAMAGE G A, SUN H R, et al. Thermodynamic calculation and its experimental correlation with the growth process of boron arsenide single crystals[J]. Journal of Applied Physics, 2019, 126(15): 155108. [23] XING J, GLASER E R, SONG B, et al. Gas-pressure chemical vapor transport growth of millimeter-sized c-BAs single crystals with moderate thermal conductivity[J]. Applied Physics Letters, 2018, 112(24): 241903. [24] XING J, CHEN X, ZHOU YY, et al. Multimillimeter-sized cubic boron arsenide grown by chemical vapor transport via a tellurium tetraiodide transport agent[J]. Applied Physics Letters, 2018, 112(26): 261901. [25] GAMAGE G A, SUN H R, ZIYAEE H, et al. Effect of boron sources on the growth of boron arsenide single crystals by chemical vapor transport[J]. Applied Physics Letters, 2019, 115(9): 092103. [26] CHAE S, MENGLE K, HERON J T, et al. Point defects and dopants of boron arsenide from first-principles calculations:donor compensation and doping asymmetry[J]. Applied Physics Letters, 2018, 113(21): 212101. [27] LYONS J L, VARLEY J B, GLASER E R, et al. Impurity-derived p-type conductivity in cubic boron arsenide[J]. Applied Physics Letters, 2018, 113(25): 251902. [28] LALNGAIHAWMI R, VANLALRUATA B, HNAMTE L, et al. Study of electronic and optical properties of boron arsenide[C]//2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT). March 3-5, 2016, Chennai, India. IEEE, 2016: 1162-166. [29] WANG S J, SWINGLE S F, YE H, et al. Synthesis andcharacterization of a p-type boron arsenide photoelectrode[J]. Journal of the American Chemical Society, 2012, 134(27): 11056-11059. [30] KANG J S, LI M, WU H, et al. Basic physical properties of cubic boronarsenide[J]. Applied Physics Letters, 2019, 115(12): 122103. [31] BUSHICK K, MENGLE K, SANDERSN, et al. Band structure and carrier effective masses of boron arsenide: effects of quasiparticle and spin-orbit coupling corrections[J]. Applied Physics Letters, 2019, 114(2): 022101. [32] LIU T H, SONG B, MEROUEH L, et al. Simultaneously high electron and hole mobilities in cubic boron-V compounds:BP, BAs, and BSb[J]. Physical Review B, 2018, 98(8): 081203. [33] CHEN X, LI C H, TIAN F, et al. Thermal expansion coefficient and lattice anharmonicity of cubic boron arsenide[J]. Physical Review Applied, 2019, 11(6): 064070. [34] OKADA Y, TOKUMARU Y. Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K[J]. Journal of Applied Physics, 1984, 56(2): 314-320. [35] WEI Z Y, YANG Z, LIU M, et al. Thermal boundary conductance between high thermal conductivity boron arsenide and silicon[J]. Journal of Applied Physics, 2020, 127(5): 055105. [36] BUSHICK K, CHAE S, DENG Z H, et al. Boron arsenide heterostructures: lattice-matched heterointerfaces and strain effects on band alignments and mobility[J]. Npj Computational Materials, 2020, 6: 3. |