人工晶体学报 ›› 2021, Vol. 50 ›› Issue (5): 947-958.
罗永治1,2, 余盛全1, 阴明2, 康彬1
收稿日期:
2020-11-25
出版日期:
2021-05-15
发布日期:
2021-06-15
通讯作者:
余盛全,博士,副研究员。E-mail:yu.s.quan@caep.cn
作者简介:
罗永治(1996—),男,四川省人,硕士研究生。E-mail:yongzhi_luo@stu.cdut.edu.cn
LUO Yongzhi1, 2, YU Shengquan1, YIN Ming2, KANG Bin1
Received:
2020-11-25
Online:
2021-05-15
Published:
2021-06-15
摘要: 2~5 μm中红外激光在民用和军事领域的应用十分广泛。直接泵浦中红外激光增益介质材料是产生中红外激光的主要方式之一,二价过渡金属离子Cr2+或Fe2+掺杂的ZnS或ZnSe (TM2+∶Ⅱ-Ⅵ)材料以其独特的光谱特性成为目前最具发展前景的中红外激光增益材料之一。本文首先归纳了TM2+∶Ⅱ-Ⅵ材料的主要制备技术路线,然后重点介绍了采用激光陶瓷技术制备TM2+∶Ⅱ-Ⅵ材料的研究进展,最后对TM2+∶Ⅱ-Ⅵ陶瓷的原料制备与烧结技术的优化进行了展望。希望以此促进TM2+∶Ⅱ-Ⅵ激光陶瓷材料的发展,为获得高性能的TM2+∶Ⅱ-Ⅵ中红外激光器奠定关键材料基础。
中图分类号:
罗永治, 余盛全, 阴明, 康彬. 过渡金属离子掺杂Ⅱ-Ⅵ族中红外激光陶瓷研究进展[J]. 人工晶体学报, 2021, 50(5): 947-958.
LUO Yongzhi, YU Shengquan, YIN Ming, KANG Bin. Research Progress on Transition Metal Ions Doped Ⅱ-Ⅵ Group Mid-Infrared Laser Ceramics[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(5): 947-958.
[1] 李 江,田 丰,刘子玉.中红外激光陶瓷的研究进展与展望[J].人工晶体学报,2020,49(8):1467-1487. LI J, TIAN F, LIU Z Y. Research progress and prospect of mid-infrared laser ceramics[J]. Journal of Synthetic Crystals, 2020, 49(8): 1467-1487(in Chinese). [2] MACDONALD J R, BEECHER S J, BERRY P A, et al. Compact mid-infrared Cr∶ZnSe channel waveguide laser[J]. Applied Physics Letters, 2013, 102(16): 161110. [3] 杨俊彦,公发全,刘 锐,等.中红外激光在光电对抗领域的应用及进展[J].飞控与探测,2020,3(6):34-42. YANG J Y, GONG F Q, LIU R, et al. Application and progress of mid-infrared laser in optoelectronic countermeasure field[J]. Flight Control & Detection, 2020, 3(6): 34-42(in Chinese). [4] 张利明,周寿桓,赵 鸿,等.Fe2+掺杂中红外固体激光器技术综述[J].激光与红外,2012,42(4):360-364. ZHANG L M, ZHOU S H, ZHAO H, et al. Introduction of Fe2+ doped mid-infrared solid state laser[J]. Laser & Infrared, 2012, 42(4): 360-364(in Chinese). [5] 周 松,李茂忠,姜 杰,等.中红外固体激光技术研究进展[J].红外技术,2019,41(5):391-399. ZHOU S, LI M Z, JIANG J, et al. Solid-state mid-infrared laser technology research progress[J]. Infrared Technology, 2019, 41(5): 391-399(in Chinese). [6] 钱传鹏,余 婷,刘 晶,等.全固态中波红外激光器研究进展[J].现代应用物理,2020,11(4):17-27. QIAN C P, YU T, LIU J, et al. Research progress of all-solid-state mid-infrared laser[J]. Modern Applied Physics, 2020, 11(4): 17-27(in Chinese). [7] VITIELLO M S, SCALARI G, WILLIAMS B, et al. Quantum cascade lasers: 20 years of challenges[J]. Optics Express, 2015, 23(4): 5167-5182. [8] 陈媛芝,张 乐,黄存新,等.TM2+∶Ⅱ-VI族中红外激光材料[J].化学进展,2015,27(5):511-521. CHEN Y Z, ZHANG L, HUANG C X, et al. TM2+∶Ⅱ-Ⅵ mid-infrared materials[J]. Progress in Chemistry, 2015, 27(5): 511-521(in Chinese). [9] DELOACH L D, PAGE R H, WILKE G D, et al. Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media[J]. IEEE Journal of Quantum Electronics, 1996, 32(6): 885-895. [10] ADAMS J J, BIBEAU C, PAGE R H, et al. 4.0-4.5-μm lasing of Fe∶ZnSe below 180 K, a new mid-infrared laser material[J]. Optics Letters, 1999, 24(23): 1720-1722. [11] WAGNER G J, CARRIG T J, PAGE R H, et al. Continuous-wave broadly tunable Cr2+∶ZnSe laser[J]. Optics Letters, 1999, 24(1): 19-21. [12] FROLOV M P, KOROSTELIN Y V, KOZLOVSKY V I, et al. 3 J pulsed Fe∶ZnS laser tunable from 3.44 to 4.19 μm[J]. Laser Physics Letters, 2015, 12(5): 055001. [13] SOROKINA I T, SOROKIN E, MIROV S, et al. Broadly tunable compact continuous-wave Cr2+∶ZnS laser[J]. Optics Letters, 2002, 27(12): 1040-1042. [14] MIROV S B, FEDOROV V V, MARTYSHKIN D, et al. Progress in mid-IR lasers based on Cr and Fe-doped Ⅱ-Ⅵ chalcogenides[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(1): 292-310. [15] DELOACH L D, PAGE R H, WILKE G D, et al. Properties of transition metal-doped zinc chalcogenide crystals for tunable IR laser radiation[J]. 1995: LM4. [16] DOROSHENKO M E, KORANDA P, JELÍNKOVÁ H, et al. Cr∶ZnSe prism for broadly tunable mid-infrared laser radiation generation[J]. Laser Physics Letters, 2007, 4(7): 503-506. [17] AKIMOV V A, FROLOV M P, KOROSTELIN Y V, et al. Vapour growth of Ⅱ-Ⅵ single crystals doped by transition metals for mid-infrared lasers[J]. Physica Status Solidi C, 2006, 3(4): 1213-1216. [18] EGOROV A S, SAVIKIN A P, EREMEIKIN O N, et al. Study of the characteristics of a laser based on the Cr2+-ion doped ZnS polycrystal obtained by the method of chemical vapor deposition[J]. Radiophysics and Quantum Electronics, 2016, 58(8): 632-637. [19] GLADILIN A A, KALINUSKIN V P, UVAROV O V, et al. The influence of iron doping on recombination characteristics of grain boundaries in polycrystalline CVD-ZnSe[J]. Journal of Physics: Conference Series, 2019, 1199: 012001. [20] MIROV S, FEDOROV V, MOSKALEV I, et al. Progress in Cr2+ and Fe2+ doped mid-IR laser materials[J]. Laser & Photonics Reviews, 2010, 4(1): 21-41. [21] NDAP J O, CHATTOPADHYAY K, ADETUNJI O O, et al. Thermal diffusion of Cr2+ in bulk ZnSe[J]. Journal of Crystal Growth, 2002, 240(1/2): 176-184. [22] DEMIRBAS U, SENNAROGLU A, SOMER M. Synthesis and characterization of diffusion-doped Cr2+∶ZnSe and Fe2+∶ZnSe[J]. Optical Materials, 2006, 28(3): 231-240. [23] MIROV S B, MIROV S B, FEDOROV V V, et al. Progress in mid-IR Cr2+ and Fe2+ doped Ⅱ-Ⅵ materials and lasers[J]. 2011: ATuA1. [24] KERNAL J, FEDOROV V V, GALLIAN A, et al. 3.9-4.8 μm gain-switched lasing of Fe: ZnSe at room temperature[C]//Lasers and Applications in Science and Engineering. Proc SPIE 6100, Solid State Lasers XV: Technology and Devices, San Jose, California, USA. 2006, 6100: 61000F. [25] MARTINEZ A, WILLIAMS L, FEDOROV V, et al. Gamma radiation-enhanced thermal diffusion of iron ions into Ⅱ-Ⅵ semiconductor crystals[J]. Optical Materials Express, 2015, 5(3): 558-565. [26] WANG X Y, CHEN Z, ZHANG L H, et al. Charge state and energy transfer investigation of iron-chromium co-doped ZnS polycrystalline prepared by step-temperature diffusion for mid-infrared laser applications[J]. Journal of Alloys and Compounds, 2017, 695: 3767-3771. [27] STITES R W, MCDANIEL S A, BARNES J O, et al. Hot isostatic pressing of transition metal ions into chalcogenide laser host crystals[J]. Optical Materials Express, 2016, 6(10): 3339-3353. [28] GAFAROV O, MARTINEZ A, FEDOROV V, et al. Enhancement of Cr and Fe diffusion in ZnSe/S laser crystals via annealing in vapors of Zn and hot isostatic pressing[J]. Optical Materials Express, 2017, 7(1): 25-31. [29] EVANS J W, STITES R W, HARRIS T R. Increasing the performance of an Fe∶ZnSe laser using a hot isostatic press[J]. Optical Materials Express, 2017, 7(12): 4296-4303. [30] BALABANOV S S, FIRSOV K N, GAVRISHCHUK E M, et al. Laser properties of Fe2+∶ZnSe fabricated by solid-state diffusion bonding[J]. Laser Physics Letters, 2018, 15(4): 045806. [31] CARNALL E Jr, HATCH S E, PARSONS W F. Optical studies on hot-pressed polycrystalline CaF2 with clean grain boundaries[M]//The Role of Grain Boundaries and Surfaces in Ceramics. Boston, MA: Springer US, 1966: 165-173. [32] LU J, YAGI H, TAKAICHI K, et al. 110 W ceramic Nd3+∶Y3Al5O12 laser[J]. Applied Physics B, 2004, 79(1): 25-28. [33] 胡智向,朱 刘,狄聚青,等.ZnSe为基质材料掺杂的中红外固体激光器的技术发展[J].化工技术与开发,2020,49(9):36-42+73. HU Z X, ZHU L, DI J Q, et al. Development of mid-infrared solid laser doped with ZnSe as matrix material[J]. Technology & Development of Chemical Industry, 2020, 49(9): 36-42+73(in Chinese). [34] SOTILLO B, ESCALANTE G, RADOI C, et al. Correlative study of structural and optical properties of ZnSe under severe plastic deformation[J]. Journal of Applied Physics, 2019, 126(22): 225702. [35] GAVRUSHCHUK E M. Polycrystalline zinc selenide for IR optical applications[J]. Inorganic Materials, 2003, 39(9): 883-899. [36] BRYZGALOV A N, MUSATOV V V, BUZ'KO V V. Optical properties of polycrystalline zinc selenide[J]. Semiconductors, 2004, 38(3): 310-312. [37] HARRIS D C. Development of hot-pressed and chemical-vapor-deposited zinc sulfide and zinc selenide in the United States for optical windows[C]//Defense and Security Symposium. Proc SPIE 6545, Window and Dome Technologies and Materials X, Orlando, Florida, USA. 2007, 6545: 654502. [38] LIU K G, ZHANG L, JI N J, et al. Synthesis and phases of ZnSe prepared by hydrothermal method[J]. Optoelectronics and Advanced Materials-Rapid Communications, 2014, 8(9-10):873-875. [39] GONG H, HUANG H, DING L, et al. Characterization and optical properties of ZnSe prepared by hydrothermal method[J]. Journal of Crystal Growth, 2006, 288(1): 96-99. [40] GONG H, HUANG H, WANG M Q, et al. Characterization and growth mechanism of ZnSe microspheres prepared by hydrothermal synthesis[J]. Ceramics International, 2007, 33(7): 1381-1384. [41] LI Y D, DING Y, QIAN Y T, et al. A solvothermal elemental reaction to produce nanocrystalline ZnSe[J]. Inorganic Chemistry, 1998, 37(12): 2844-2845. [42] ZHU J J, KOLTYPIN Y, GEDANKEN A. General sonochemical method for the preparation of nanophasic selenides: synthesis of ZnSe nanoparticles[J]. Chemistry of Materials, 2000, 12(1): 73-78. [43] ABDEL RAFEA M. Preparation and characterization of ZnSe nanoparticles by mechanochemical process[J]. Journal of Materials Science: Materials in Electronics, 2007, 18(4): 415-420. [44] ACHIMOVIČOVÁ M, BALÁ P, OHTANI T, et al. Characterization of mechanochemically synthesized ZnSe in a laboratory and an industrial mill[J]. Solid State Ionics, 2011, 192(1): 632-637. [45] WEI S, ZHANG L, YANG H, et al. Preliminary study of 3D ball-milled powder processing and SPS-accelerated densification of ZnSe ceramics[J]. Optical Materials Express, 2017, 7(4): 1131. [46] GAO J L, LIU P, ZHANG J, et al. Fabrication of high dense ZnSe ceramic by spark plasma sintering: the effect of the powder process method[J]. Solid State Phenomena, 2018, 281: 661-666. [47] ZHOU G, CALVEZ L, DELAIZIR G, et al. Comparative study of ZnSe powders synthesized by two different methods and sintered by Hot-Pressing[J]. Journal of Optoelectronics and Advanced Materials, 2014, 86(5): 436-441. [48] SAFIAN S, ZAKERI M, RAHIMIPOUR M R, et al. Influence of SPS parameters on the density and hardness of zinc selenide[J]. International Journal of Materials Research, 2016, 107(10): 948-953. [49] EHSANI M, SAFIAN S, ZAKERI M, et al. Effect of sintering temperature on the densification and optical properties of spark plasma sintered ZnSe ceramics[J]. International Journal of Materials Research, 2019, 110(5): 454-459. [50] LU H, LIU P, TAO X H, et al. Optical properties of transparent ZnSe0.9S0.1 mixed crystal ceramics prepared by hot isostatic pressing[J]. Optical Materials, 2020, 108: 110214. [51] PAGE R H, SCHAFFERS K I, DELOACH L D, et al. Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers[J]. IEEE Journal of Quantum Electronics, 1997, 33(4): 609-619. [52] MIROV S B, MOSKALEV I S, VASILYEV S, et al. Frontiers of mid-IR lasers based on transition metal doped chalcogenides[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(5): 1-29. [53] 王云鹏,王 飞,赵东旭.Cr2+∶ZnSe全固态中红外激光器[J].中国光学,2016,9(5):563-568. WANG Y P, WANG F, ZHAO D X. All solid state mid-IR laser of Cr2+∶ZnSe[J]. Chinese Optics, 2016, 9(5): 563-568(in Chinese). [54] GALLIAN A, FEDOROV V V, MIROV S B, et al. Hot-pressed ceramic Cr2+∶ZnSe gain-switched laser[J]. Optics Express, 2006, 14(24): 11694-11701. [55] CHEN M, LI W, KOU H M, et al. Hot-pressed Cr∶ZnSe ceramic as mid-infrared laser material[C]//Proc SPIE 8786, Pacific Rim Laser Damage 2013: Optical Materials for High Power Lasers, 2013, 8786: 87860L. [56] WEI Y C, LIU C Y, MA E, et al. The optical spectra characterization of Cr2+∶ZnSe polycrystalline synthesized by direct reaction of Zn-Cr alloy and element Se[J]. Ceramics International, 2020, 46(13): 21136-21140. [57] FEDOROV V, MARTYSHKIN D, KARKI K, et al. Q-switched and gain-switched Fe∶ZnSe lasers tunable over 3.60-5.15 μm[J]. Optics Express, 2019, 27(10): 13934-13941. [58] YU S Q, WU Y Q. Synthesis of Fe∶ZnSe nanopowders via the co-precipitation method for processing transparent ceramics[J]. Journal of the American Ceramic Society, 2019, 102(12): 7089-7097. [59] YU S Q, CARLONI D, WU Y Q. Microstructure development and optical properties of Fe∶ZnSe transparent ceramics sintered by spark plasma sintering[J]. Journal of the American Ceramic Society, 2020, 103(8): 4159-4166. [60] KARKI K, YU S Q, FEDOROV V, et al. Hot-pressed ceramic Fe∶ZnSe gain-switched laser[J]. Optical Materials Express, 2020, 10(12): 3417. [61] YASHINA E V. Preparation and properties of polycrystalline ZnS for IR applications[J]. Inorganic Materials, 2003, 39(7): 663-668. [62] GAVRISHCHUK E M, YASHINA é V. Zinc sulfide and zinc selenide optical elements for IR engineering[J]. Journal of Optical Technology, 2004, 71(12): 822-827. [63] 白素媛,吴宝丽,丛士博,等.硫化锌材料的研究与发展[J].山东化工,2021,50(3):83-84+88. BAI S Y, WU B L, CONG S B, et al. Research and development of zinc sulfide materials[J]. Shandong Chemical Industry, 2021, 50(3): 83-84+88(in Chinese). [64] ZHU S Z, MA H L, ZHANG X H, et al. Preparation and hot pressing of ZnS nano powders for producing transparent ceramics[J]. Rare Metal Materials and Engineering, 2008, 37: 256-260. [65] AHN H Y, CHOI W J, LEE S Y, et al. Mechanochemical synthesis of ZnS for fabrication of transparent ceramics[J]. Research on Chemical Intermediates, 2018, 44(8): 4721-4731. [66] CHLIQUE C, DELAIZIR G, MERDRIGNAC-CONANEC O, et al. A comparative study of ZnS powders sintering by hot uniaxial pressing (HUP) and spark plasma sintering (SPS)[J]. Optical Materials, 2011, 33(5): 706-712. [67] CHLIQUE C, MERDRIGNAC-CONANEC O, HAKMEH N, et al. Transparent ZnS ceramics by sintering of high purity monodisperse nanopowders[J]. Journal of the American Ceramic Society, 2013, 96(10): 3070-3074. [68] CHEN Y Z, ZHANG L, ZHANG J, et al. Fabrication of transparent ZnS ceramic by optimizing the heating rate in spark plasma sintering process[J]. Optical Materials, 2015, 50: 36-39. [69] LI Y Y, WU Y Q. Transparent and luminescent ZnS ceramics consolidated by vacuum hot pressing method[J]. Journal of the American Ceramic Society, 2015, 98(10): 2972-2975. [70] YIN J, LI Y Y, WU Y Q. Near-net-shape processed ZnS ceramics by aqueous casting and pressureless sintering[J]. Ceramics International, 2016, 42(9): 11504-11508. [71] LI C Y, PAN Y B, KOU H M, et al. Densification behavior, phase transition, and preferred orientation of hot-pressed ZnS ceramics from precipitated nanopowders[J]. Journal of the American Ceramic Society, 2016, 99(9): 3060-3066. [72] LI Y Y, TAN W X, WU Y Q. Phase transition between sphalerite and wurtzite in ZnS optical ceramic materials[J]. Journal of the European Ceramic Society, 2020, 40(5): 2130-2140. [73] LI C Y, XIE T F, DAI J W, et al. Hot-pressing of zinc sulfide infrared transparent ceramics from nanopowders synthesized by the solvothermal method[J]. Ceramics International, 2018, 44(1): 747-752. [74] YEO S Y, KWON T H, PARK C S, et al. Sintering and optical properties of transparent ZnS ceramics by pre-heating treatment temperature[J]. Journal of Electroceramics, 2018, 41(1/2/3/4): 1-8. [75] LEE K T, CHOI B H, WOO J U, et al. Microstructural and optical properties of the ZnS ceramics sintered by vacuum hot-pressing using hydrothermally synthesized ZnS powders[J]. Journal of the European Ceramic Society, 2018, 38(12): 4237-4244. [76] CHOI B H, KIM D S, LEE K T, et al. Highly IR transparent ZnS ceramics sintered by vacuum hot press using hydrothermally produced ZnS nanopowders[J]. Journal of the American Ceramic Society, 2020, 103(4): 2663-2673. [77] DURAND G R, HAKMEH N, DORCET V, et al. New insights in structural characterization of transparent ZnS ceramics hot-pressed from nanocrystalline powders synthesized by combustion method[J]. Journal of the European Ceramic Society, 2019, 39(10): 3094-3102. [78] MOSKALEV I, MIROV S, MIROV M, et al. 140 W Cr∶ZnSe laser system[J]. Optics Express, 2016, 24(18): 21090-21104. [79] LI Y Y, LIU Y, FEDOROV V V, et al. Hot-pressed chromium doped zinc sulfide infrared transparent ceramics[J]. Scripta Materialia, 2016, 125: 15-18. [80] LI C Y, CHEN H H, IVANOV M, et al. Large-scale hydrothermal synthesis and optical properties of Cr2+∶ZnS nanocrystals[J]. Ceramics International, 2018, 44(11): 13169-13175. [81] LI C Y, XIE T F, KOU H M, et al. Hot-pressing and post-HIP treatment of Fe2+∶ZnS transparent ceramics from co-precipitated powders[J]. Journal of the European Ceramic Society, 2017, 37(5): 2253-2257. |
[1] | 张沛雄;李善明;杨依伦;张连翰;李真;陈振强;杭寅. 中红外氟化物激光晶体的生长和性能优化研究[J]. 人工晶体学报, 2020, 49(8): 1369-1378. |
[2] | 李江;田丰;刘子玉. 中红外激光陶瓷的研究进展与展望[J]. 人工晶体学报, 2020, 49(8): 1467-1487. |
[3] | 李勇;廖江河;王应;陈宁;佘彦超. 硫脲掺杂金刚石的高温高压合成及FT-IR光谱研究[J]. 人工晶体学报, 2020, 49(7): 1176-1179. |
[4] | 张锦;惠增哲;王信哲;龙伟;崔梦晨;邹梦星. PMN-PT:Er3+铁电晶体的光谱特性与J-O理论分析[J]. 人工晶体学报, 2020, 49(6): 1023-1029. |
[5] | 方攀;袁泽锐;陈莹;尹文龙;康彬. 中红外激光晶体Dy:PbGa2S4的生长与器件制备[J]. 人工晶体学报, 2020, 49(5): 771-773. |
[6] | 康杰;宋月鹏;孙为云;丁紫阳;李连荣;焦璨;雷腾飞. 可控化学腐蚀法制备碳化硅量子点及其表面修饰[J]. 人工晶体学报, 2020, 49(10): 1889-1895. |
[7] | 王明辉;方海亮;刘霞;顾士甲. Graphene/ZrO2复合陶瓷材料的热导性能研究[J]. 人工晶体学报, 2017, 46(4): 646-650. |
[8] | 周振兴;陆晓芳;陈鹏;顾士甲;王连军. AgNW s/Yb0.3Co4Sb12纳米复合热电材料的制备及热电性能的研究[J]. 人工晶体学报, 2017, 46(10): 1879-1884. |
[9] | 黄国灿;刘鹏;徐斌;周刊;徐晓东;章健;唐定远. 复合结构激光陶瓷研究进展[J]. 人工晶体学报, 2016, 45(5): 1248-1254. |
[10] | 阳明明;王晓丹;曾雄辉;郭昀;张纪才;徐科. Pr3+,Tm3+共注入氮化铝薄膜的光谱特性[J]. 人工晶体学报, 2016, 45(5): 1305-1309. |
[11] | 田甜;徐家跃;展宗贵;张道标. 仿祖母绿立方氧化锆晶体的光谱特性研究[J]. 人工晶体学报, 2015, 44(3): 581-586. |
[12] | 王飞;田一光;张乔. Ba0.955Al2Si2-xTixO8∶Eu2+荧光粉晶体结构和光谱特性[J]. 人工晶体学报, 2014, 43(11): 2880-2885. |
[13] | 苑晓宇;马伟民;闻雷;杨化仁. 乙醇/ 水混合溶剂热法制备BaHfO3:Ce超微粒子[J]. 人工晶体学报, 2011, 40(2): 486-491. |
[14] | 成诗恕;程艳;赵呈春;李东振;徐晓东;徐军. Yb,Ho:YAG晶体的生长及光谱性能[J]. 人工晶体学报, 2010, 39(2): 332-335. |
[15] | 程艳;徐晓东;成诗恕;姜本学;徐军;潘裕柏. Nd:Y3Al5O12透明激光陶瓷的光学性能[J]. 人工晶体学报, 2010, 39(2): 449-454. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||