人工晶体学报 ›› 2021, Vol. 50 ›› Issue (7): 1275-1286.
郑钧升, 刘璐芳, 潘陈馨钰, 郭欣, 童利民, 王攀
收稿日期:
2021-05-06
出版日期:
2021-07-15
发布日期:
2021-08-16
通讯作者:
王攀,博士,研究员。E-mail:nanopan@zju.edu.cn
作者简介:
郑钧升(1998—),男,重庆市人,博士研究生。E-mail:zhengjunsheng@zju.edu.cn
基金资助:
ZHENG Junsheng, LIU Lufang, PAN Chenxinyu, GUO Xin, TONG Limin, WANG Pan
Received:
2021-05-06
Online:
2021-07-15
Published:
2021-08-16
摘要: 表面等离激元是一种存在于金属(或掺杂半导体)-介质界面的电磁极化和振荡现象,可以显著增强纳米尺度光与物质的相互作用,在波导、生化传感、超快调制、探测以及非线性光学等领域具有重要应用前景。表面等离激元的激发主要采用受衍射极限限制的光学激发方式,通常需要棱镜、光栅等大尺寸光学元件的辅助,这极大限制了等离激元器件的小型化和片上高密度集成。通过将等离激元纳米结构和隧道结集成起来,低能量的隧穿电子可以直接激发该结构的等离激元模式,具有超小尺寸、超快调制速度等优点。本文将回顾基于电子隧穿效应的表面等离激元激发的研究历史,并着重介绍该领域的最新研究进展。
中图分类号:
郑钧升, 刘璐芳, 潘陈馨钰, 郭欣, 童利民, 王攀. 基于非弹性电子隧穿的表面等离激元激发[J]. 人工晶体学报, 2021, 50(7): 1275-1286.
ZHENG Junsheng, LIU Lufang, PAN Chenxinyu, GUO Xin, TONG Limin, WANG Pan. Inelastic Electron Tunneling-Based Excitation of Surface Plasmons[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(7): 1275-1286.
[1] ZAYATS A V, SMOLYANINOV I I, MARADUDIN A A. Nano-optics of surface plasmon polaritons[J]. Physics Reports, 2005, 408(3/4): 131-314. [2] SCHULLER J A, BARNARD E S, CAI W S, et al. Plasmonics for extreme light concentration and manipulation[J]. Nature Materials, 2010, 9(3): 193-204. [3] BRONGERSMA M L, SHALAEV V M. The casefor plasmonics[J]. Science, 2010, 328(5977): 440-441. [4] LAL S, LINK S, HALAS N J. Nano-optics from sensing to waveguiding[J]. Nature Photonics, 2007, 1(11): 641-648. [5] GUO X, YING Y, TONG L. Photonic nanowires: from subwavelength waveguides to optical sensors[J]. Accounts of Chemical Research, 2014, 47(2): 656-666. [6] KRASAVIN A V, ZAYATS A V. Guiding light at the nanoscale: numerical optimization of ultrasubwavelength metallic wire plasmonic waveguides[J]. Optics Letters, 2011, 36(16): 3127-3129. [7] MACDONALD K F, SÁMSON Z L, STOCKMAN M I, et al. Ultrafast active plasmonics[J]. Nature Photonics, 2009, 3(1): 55-58. [8] WURTZ G A, POLLARD R, HENDREN W, et al. Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality[J]. Nature Nanotechnology, 2011, 6(2): 107-111. [9] KRASAVIN A V, ZAYATS A V. Photonic signal processing on electronic scales: electro-optical field-effect nanoplasmonic modulator[J]. Physical Review Letters, 2012, 109(5): 053901. [10] MELIKYAN A, ALLOATTI L, MUSLIJA A, et al. High-speed plasmonic phase modulators[J]. Nature Photonics, 2014, 8(3): 229-233. [11] AYATA M, FEDORYSHYN Y, HENI W, et al. High-speed plasmonic modulator in a single metal layer[J]. Science, 2017, 358(6363): 630-632. [12] FALK A L, KOPPENS F H L, YU C L, et al. Near-field electrical detection of optical plasmons and single plasmon sources[J].Nature Physics, 2009, 5(7): 1-5. [13] KNIGHT M W, SOBHANI H, NORDLANDER P, et al. Photodetection with active optical antennas[J]. Science, 2011, 332(6030): 702-704. [14] LIU N, TANG M L, HENTSCHEL M, et al. Nanoantenna-enhanced gas sensing in a single tailored nanofocus[J]. Nat Matter, 2011, 10(8): 631. [15] DATHE A, ZIEGLER M, HÜBNER U, et al. Electrically excited plasmonic nanoruler for biomolecule detection[J]. Nano Letters, 2016, 16(9): 5728-5736. [16] HILL M T, GATHER M C. Advances in small lasers[J]. Nature Photonics, 2014, 8(12): 908-918. [17] MA R M, OULTON R F. Applications of nanolasers[J]. Nature Nanotechnology, 2019, 14(1): 12-22. [18] WU H, GAO Y X, XU P Z, et al. Plasmonic nanolasers: pursuing extreme lasing conditions on nanoscale[J]. Advanced Optical Materials, 2019, 7(17): 1900334. [19] KAURANEN M, ZAYATS A V. Nonlinear plasmonics[J]. Nature Photonics, 2012, 6(11): 737-748. [20] KRASAVIN A V, GINZBURG P, ZAYATS A V. Free-electron optical nonlinearities in plasmonic nanostructures: a review of the hydrodynamic description[J]. Laser & Photonics Reviews, 2018, 12(1): 1700082. [21] WEEBER J C, KRENN J R, DEREUX A, et al. Near-field observation of surface plasmon polariton propagation on thin metal stripes[J]. Physical Review B, 2001, 64(4): 045411. [22] ROSZKIEWICZ A, NASALSKI W. Unidirectional SPP excitation at asymmetrical two-layered metal gratings[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2010, 43(18): 185401. [23] SÖNNICHSEN C, FRANZL T, WILK T, et al. Drastic reduction of plasmon damping in gold nanorods[J]. Physical Review Letters, 2002, 88(7): 077402. [24] HU M, NOVO C, FUNSTON A, et al. Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance[J]. Journal of Materials Chemistry, 2008, 18(17): 1949-1960. [25] RITCHIE R H. Plasma losses by fastelectrons in thin films[J]. Physical Review, 1957, 106(5): 874-881. [26] BASHEVOY M V, JONSSON F, KRASAVIN A V, et al. Generation of traveling surface plasmon waves by free-electron impact[J]. Nano Letters, 2006, 6(6): 1113-1115. [27] VESSEUR E J R, WAELE R D, KUTTGE M, et al. Direct observation of plasmonic modes in Au nanowires using high-resolution cathodoluminescence spectroscopy[J]. Nano Letters, 2007, 7(9): 2843-2846. [28] NELAYAH J, KOCIAK M, STÉPHAN O, et al. Mapping surface plasmons on a single metallic nanoparticle[J]. Nature Physics, 2007, 3(5): 348-353. [29] KOLLER D M, HOHENAU A, DITLBACHER H, et al. Organic plasmon-emitting diode[J]. Nature Photonics, 2008, 2(11): 684-687. [30] MA Z, ZHANG X N, GUO X, et al. Surface plasmon excitation in silver nanowires directly deposited on a laser diode chip[J]. Applied Physics Letters, 2010, 96(5): 051119. [31] RAI P, HARTMANN N, BERTHELOT J, et al. Electrical excitation of surface plasmons by an individual carbon nanotube transistor[J]. Physical Review Letters, 2013, 111(2): 026804. [32] SEO M K, HUANG K C Y, BRONGERSMA M L. Electrically-driven subwavelength optical nanocircuits[J]. Nature Photonics, 2014, 8(3):244-249. [33] LIU Y, ZHANG J, LIU H, et al. Electrically driven monolithic subwavelength plasmonic interconnect circuits[J]. Science Advances, 2017, 3(10): e1701456. [34] ZHU W Q, ESTEBAN R, BORISOV A G, et al. Quantum mechanical effects in plasmonic structures with subnanometre gaps[J]. Nature Communications, 2016, 7(1): 1-14. [35] XU D, XIONG X, WU L, et al. Quantum plasmonics: new opportunity in fundamental and applied photonics[J]. Advances in Optics and Photonics, 2018, 10(4): 703-756. [36] BAUMBERG J J, AIZPURUA J, MIKKELSEN M H, et al. Extreme nanophotonics from ultrathin metallic gaps[J]. Nature Materials, 2019, 18(7): 668-678. [37] ZHOU Z K, LIU J F, BAO Y J, et al. Quantum plasmonics get applied[J]. Progress in Quantum Electronics, 2019, 65: 1-20. [38] CIRACÌ C, HILL R T, MOCK J J, et al. Probing the ultimate limits of plasmonic enhancement[J]. Science, 2012, 337(6098): 1072-1074. [39] SAVAGE K J, HAWKEYE M M, ESTEBAN R, et al. Revealing the quantum regime in tunnelling plasmonics[J]. Nature, 2012, 491(7425): 574-577. [40] TAN S F, WU L, YANG J K W, et al. Quantum plasmon resonances controlled by molecular tunnel junctions[J]. Science, 2014, 343(6178): 1496-1499. [41] KERN J, KULLOCK R, PRANGSMA J, et al. Electrically driven optical antennas[J]. Nature Photonics, 2015, 9(9): 582-586. [42] BENZ F, SCHMIDT M K, DREISMANN A, et al. Single-molecule optomechanics in “picocavities”[J]. Science, 2016, 354(6313): 726-729. [43] DOPPAGNE B, CHONG M C, BULOU H, et al. Electrofluorochromism at the single-molecule level[J]. Science, 2018, 361(6399): 251-255. [44] GARG M, KERN K. Attosecond coherent manipulation of electrons in tunneling microscopy[J]. Science, 2020, 367(6476): 411-415. [45] BINNING G, ROHRER H, GERBER C, et al. Surface studies by scanning tunneling microscopyscanning tunneling microscopy[M]. Manhattan: John Wiley & Sons Inc, 1982. [46] KHANNA S K, LAMBE J. Inelastic electron tunneling spectroscopy[J]. Science, 1983, 220(4604): 1345-1351. [47] REED M A. Inelastic electron tunneling spectroscopy[J]. Materials Today, 2008, 11(11): 46-50. [48] LAMBE J, MCCARTHY S L. Light emission from inelastic electron tunneling[J]. Physical Review Letters, 1976, 37(14): 923-925. [49] DAVIS L C. Theory of surface-plasmon excitation in metal-insulator-metal tunnel junctions[J]. Physical Review B, 1977, 16(6): 2482-2490. [50] ADAMS A, WYSS J C, HANSMA P K. Possible observation of local plasmon modes excited by electrons tunneling through junctions[J]. Physical Review Letters, 1979, 42(14): 912-915. [51] KIRTLEY J R, THEIS T N, TSANG J C. Diffraction-grating-enhanced light emission from tunnel junctions[J]. Applied Physics Letters, 1980, 37(5): 435-437. [52] USHIODA, RUTLEDGE, PIERCE. Prism-coupled light emission from tunnel junctions[J]. Physical Review Letters, 1985, 54(3): 224-226. [53] PERSSON B, BARATOFF A. Theory of photon emission in electrontunneling to metallic particles[J]. Physical Review Letters, 1992, 68(21): 3224-3227. [54] DOWNES A, TAYLOR M E, WELLAND M E. Two-sphere model of photon emission from the scanning tunneling microscope[J]. Physical Review B, 1998, 57(11): 6706-6714. [55] GIMZEWSKI J K, REIHL B, COOMBS J H, et al. Photon emission with the scanningtunneling microscope[J]. Zeitschrift Für Physik B Condensed Matter, 1988, 72(4): 497-501. [56] COOMBS J H, GIMZEWSKI J K, REIHL B, et al. Photon emission experiments with the scanning tunnelling microscope[J]. Journal of Microscopy, 1988, 152(2): 325-336. [57] SILLY F,GUSEV A O, TALEB A, et al. Coupled plasmon modes in an ordered hexagonal monolayer of metal nanoparticles: a direct observation[J]. Physical Review Letters, 2000, 84(25): 5840-5843. [58] MOAL E L, MARGUET S, ROGEZ B, et al. An electrically excited nanoscale light source with active angular control of the emitted light[J]. Nano Letters, 2013, 13(9): 4198-4205. [59] MOAL E L, MARGUET S, CANNESON D, et al. Engineering the emission of light from a scanning tunneling microscope using the plasmonic modes of a nanoparticle[J]. Physical Review B, 2016, 93(3): 035418. [60] CAO S Y, ZAPATA-HERRERA M, CAMPOS A, et al. Probing the radiative electromagnetic local density of states in nanostructures with a scanning tunneling microscope[J]. ACS Photonics, 2020, 7(5): 1280-1289. [61] MARTÍN-JIMÉNEZ A, FERNÁNDEZ-DOMÁNGUEZ A I, LAUWAET K, et al. Unveiling the radiative local density of optical states of a plasmonic nanocavity by STM[J]. Nature Communications, 2020, 11: 1021. [62] KUHNKE K,GROßE C, MERINO P, et al. Atomic-scale imaging and spectroscopy of electroluminescence at molecular interfaces[J]. Chemical Reviews, 2017, 117(7): 5174-5222. [63] ZHANG L, YU Y J, CHEN L G, et al. Electrically driven single-photon emission from an isolated single molecule[J]. Nature Communications, 2017, 8(1):580. [64] LUO Y, CHEN G, ZHANG Y, et al. Electrically driven single-photon superradiance from molecular chains in a plasmonic nanocavity[J]. Physical Review Letters, 2019, 122(23): 233901. [65] QIU X H, NAZIN G V, HO W. Vibrationally resolved fluorescence excited with submolecular precision[J]. Science, 2003, 299(5606): 542-546. [66] ZHANG Y, LUO Y, ZHANG Y, et al. Visualizing coherent intermolecular dipole-dipole coupling in real space[J]. Nature, 2016, 531(7596): 623-627. [67] FÉVRIER P, GABELLI J. Tunneling time probed by quantum shot noise[J]. Nature Communications, 2018, 9: 4940. [68] JOHANSSON P. Light emission from a scanning tunneling microscope: fully retarded calculation[J]. Physical Review B, 1998, 58(16): 10823-10834. [69] RENDELL R W, SCALAPINO D J. Surface plasmons confined by microstructures on tunnel junctions[J]. Physical Review B, 1981, 24(6): 3276-3294. [70] PARZEFALL M, BHARADWAJ P, JAIN A, et al. Antenna-coupled photon emission from hexagonal boron nitride tunnel junctions[J]. Nature Nanotechnology, 2015, 10(12): 1058-1063. [71] QIAN H L, HSU S W, GURUNATHA K, et al. Efficient light generation from enhanced inelastic electrontunnelling[J]. Nature Photonics, 2018, 12(8): 485-488. [72] HE X B, TANG J B, HU H T, et al. Electrically driven optical antennas based on template dielectrophoretic trapping[J]. ACS Nano, 2019, 13(12): 14041-14047. [73] USKOV A V, KHURGIN J B, PROTSENKO I E, et al. Excitation of plasmonic nanoantennas by nonresonant and resonant electron tunnelling[J]. Nanoscale, 2016, 8(30): 14573-14579. [74] QIN J, LIU Y J, LUO H W, et al. Tunable light emission by electrically excited plasmonic antenna[J]. ACS Photonics, 2019, 6(10): 2392-2396. [75] LIU Y J, JIANG Z J, QIN J, et al. Localized surface plasmon mode-enhanced spectrum-tunable radiation in electrically driven plasmonic antennas[J]. Optics Letters, 2020, 45(19): 5506-5509. [76] WANG P, KRASAVIN A V, NASIR M E, et al. Reactive tunnel junctions in electrically driven plasmonic nanorod metamaterials[J].Nat Nanotechnol, 2018, 13(2): 159-164. [77] KRASAVIN A V, WANG P, NASIR M E, et al. Tunneling-induced broadband and tunable optical emission from plasmonic nanorod metamaterials[J]. Nanophotonics, 2020, 9(2): 427-434. [78] WANG P, NASIR M E, KRASAVIN A V, et al. Optoelectronic synapses based on hot-electron-induced chemical processes[J]. Nano Letters, 2020, 20(3): 1536-1541. [79] BHARADWAJ P, BOUHELIER A, NOVOTNY L. Electrical excitation of surfaceplasmons[J]. Physical Review Letters, 2011, 106(22): 226802. [80] CAZIER N, BURET M, USKOV A V, et al. Electrical excitation of waveguided surface plasmons by a light-emitting tunneling optical gap antenna[J]. Optics Express, 2016, 24(4): 3873-3884. [81] DU W, WANG T, CHU H S, et al. Highly efficient on-chip direct electronic-plasmonic transducers[J]. Nature Photonics, 2017, 11(10): 623-627. [82] ZHANG C, HUGONIN J P, COUTROT A L, et al. Antenna surface plasmon emission by inelastic tunneling[J]. Nature Communications, 2019, 10: 4949. [83] HUANG B H, GAO S P, LIU Y, et al. Nano-antenna enhanced waveguide integrated light source based on an MIS tunnel junction[J]. Optics Letters, 2019, 44(9): 2330-2333. [84] HUANG B H, LIU Y, CHUA S, et al. Plasmonic-enhanced light emission from a waveguide-integrated tunnel junction[J].Josa B, 2020, 37(7): 2171-2178. [85] DODERER M, PARZEFALL M, JOERG A, et al. Light emission from a waveguide integrated MOS tunnel junction[J]. 2019: FW3C.1. [86] DONG Z G, CHU H S, ZHU D, et al. Electrically-excited surface plasmon polaritons with directionality control[J]. ACS Photonics, 2015, 2(3): 385-391. [87] WANG T, BOER-DUCHEMIN E, ZHANG Y, et al. Excitation of propagating surface plasmons with a scanning tunnelling microscope[J]. Nanotechnology, 2011, 22(17): 175201. [88] JIANG Z J, WANG L. Unidirectional propagation of electrically driven surface plasmon polaritons: a numerical study[J]. Nanotechnology, 2020, 31(45): 455207. [89] DU W, WANG T, CHU H S, et al. On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions[J]. Nature Photonics, 2016, 10(4): 274-280. [90] DU W, HAN Y M, HU H T, et al. Directional excitation of surface plasmon polaritons via molecular through-bond tunneling across double-barrier tunnel junctions[J]. Nano Letters, 2019, 19(7): 4634-4640. [91] GURUNARAYANAN S P, VERELLEN N, ZHARINOV V S, et al. Electrically driven unidirectional optical nanoantennas[J]. Nano Letters, 2017, 17(12): 7433-7439. [92] KULLOCK R, OCHS M, GRIMM P, et al. Electrically-driven Yagi-Uda antennas for light[J]. Nature Communications, 2020, 11: 115. |
[1] | 高博锋, 任梦昕, 郑大怀, 兀伟, 蔡卫, 孙军, 孔勇发, 许京军. 铌酸锂的耄耋之路:历史与若干进展[J]. 人工晶体学报, 2021, 50(7): 1183-1199. |
[2] | 曹凤朝, 吕博昆, 丁宇峰, 石锦卫. 一维等离激元晶格中的能带结构调控[J]. 人工晶体学报, 2021, 50(7): 1259-1274. |
[3] | 杨杰, 王甲富, 贾宇翔, 陈维, 屈绍波. 基于群表示论的微波等离激元谐振器模式响应研究[J]. 人工晶体学报, 2021, 50(7): 1348-1355. |
[4] | 程林, 张磊. 近红外可调辐射方向的非线性光学天线[J]. 人工晶体学报, 2021, 50(7): 1356-1361. |
[5] | 任玉娇, 刘宗亮, 顾泓, 董晓鸣, 高晓东, 司志伟, 徐科. LPE生长GaN的不同极性面的光学性质[J]. 人工晶体学报, 2021, 50(6): 996-1001. |
[6] | 刘艺蕊, 段敏娜, 顾希煊, 高艳红, 何勇, 宋娟. 一例镉(Ⅱ)配合物的合成、结构及发光性质研究[J]. 人工晶体学报, 2021, 50(6): 1044-1048. |
[7] | 王明, 王连连, 李林凤, 罗新宇, 刘洋, 赵然, 杨小丽. 助熔剂在硅酸盐荧光粉中的应用及分析[J]. 人工晶体学报, 2021, 50(6): 1149-1157. |
[8] | 成双良, 任国浩, 吴云涛. Cs2HfCl6和Cs2HfCl6∶Tl晶体的生长、光学和闪烁性能研究[J]. 人工晶体学报, 2021, 50(5): 803-808. |
[9] | 胡斌, 郭亮, 杨淑敏, 曹丽萍. Pb2+掺杂CaMoO4∶Dy3+,Eu3+荧光粉发光性能及能量传递机理的研究[J]. 人工晶体学报, 2021, 50(5): 871-876. |
[10] | 王庆国, 刘波, 罗平, 唐慧丽, 吴锋, 康森, 段金柱, 王勤峰, 徐军. 钛宝石晶体的泡生法生长和闪烁发光性能[J]. 人工晶体学报, 2021, 50(4): 762-767. |
[11] | 张利繁, 贾伟, 董海亮, 李天保, 贾志刚, 许并社. InGaN/GaN微米阵列结构的生长及发光性能研究[J]. 人工晶体学报, 2021, 50(4): 776-782. |
[12] | 屈尚达, 冀子武. N型掺杂ZnSe/BeTe Ⅱ型量子阱中空间间接带电激子跃迁发光的直接证据[J]. 人工晶体学报, 2021, 50(2): 290-295. |
[13] | 刘文鹏, 任浩, 李泓沅, 丁守军, 张庆礼. 共沉淀法制备LuGG∶Ce纳米荧光粉及其发光性能研究[J]. 人工晶体学报, 2021, 50(2): 325-330. |
[14] | 杨晨乐, 李凌燕, 李嫚, 沈轶明, 潘尚可, 潘建国. [(Epy)2][MnBr2I2]配合物的合成、晶体结构及发光性能[J]. 人工晶体学报, 2021, 50(2): 345-352. |
[15] | 赵昕睿, 李龙娇, 龚长帅, 王楚祺, 马藤, 王雪娇. (La0.95Eu0.05)F3纳米晶的自牺牲模板法合成及其下转换发光性能研究[J]. 人工晶体学报, 2021, 50(1): 53-59. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||