[1] VON KLITZING K. The quantized Hall effect[J]. Reviews of Modern Physics, 1986, 58(3): 519-531. [2] KANE C L, MELE E J. Quantum spin Hall effect in graphene[J]. Physical Review Letters, 2005, 95(22): 226801. [3] BERNEVIG B A, ZHANG S C. Quantum spin Hall effect[J]. Physical Review Letters, 2006, 96(10): 106802. [4] HASAN M Z, KANE C L. Colloquium: topological insulators[J]. Reviews of Modern Physics, 2010, 82(4): 3045-3067. [5] QI X L, ZHANG S C. Topological insulators and superconductors[J]. Reviews of Modern Physics, 2011, 83(4): 1057-1110. [6] CHIU C K, TEO J C Y, SCHNYDER A P, et al. Classification of topological quantum matter with symmetries[J]. Reviews of Modern Physics, 2016, 88(3): 035005. [7] HATSUGAI Y. Chern number and edge states in the integer quantum Hall effect[J]. Physical Review Letters, 1993, 71(22): 3697-3700. [8] QI X L, WU Y S, ZHANG S C. General theorem relating the bulk topological number to edge states in two-dimensional insulators[J]. Physical Review B, 2006, 74(4): 045125. [9] KRAUS Y E, LAHINI Y, RINGEL Z, et al. Topological states and adiabatic pumping in quasicrystals[J]. Physical Review Letters, 2012, 109(10): 106402. [10] BENALCAZAR W A, BERNEVIG B A, HUGHES T L. Quantized electric multipole insulators[J]. Science, 2017, 357(6346): 61-66. [11] SONG W, SUN W, CHEN C, et al. Breakup and recovery of topological zero modes in finite non-Hermitian optical lattices[J]. Physical Review Letters, 2019, 123(16): 165701. [12] LINDNER N H, REFAEL G, GALITSKI V. Floquet topological insulator in semiconductor quantum wells[J]. Nature Physics, 2011, 7(6): 490-495. [13] SU W P, SCHRIEFFER J R, HEEGER A J. Solitons in polyacetylene[J]. Physical Review Letters, 1979, 42(25): 1698-1701. [14] HEEGER A J, KIVELSON S, SCHRIEFFER J R, et al. Solitons in conducting polymers[J]. Reviews of Modern Physics, 1988, 60(3): 781-850. [15] RYU S, HATSUGAI Y. Topological origin of zero-energy edge states in particle-hole symmetric systems[J]. Physical Review Letters, 2002, 89(7): 077002. [16] BLANCO-REDONDO A, ANDONEGUI I, COLLINS M J, et al. Topological optical waveguiding in silicon and the transition between topological and trivial defect states[J]. Physical Review Letters, 2016, 116(16): 163901. [17] ST-JEAN P, GOBLOT V, GALOPIN E, et al. Lasing in topological edge states of a one-dimensional lattice[J]. Nature Photonics, 2017, 11(10): 651-656. [18] WANG Y H, LIU W J, JI Z R, et al. Coherent interactions in one-dimensional topological photonic systems and their applications in all-optical logic operation[J]. Nano Letters, 2020, 20(12): 8796-8802. [19] MUKHERJEE S, SPRACKLEN A, VALIENTE M, et al. Experimental observation of anomalous topological edge modes in a slowly driven photonic lattice[J]. Nature Communications, 2017, 8: 13918. [20] LIU D T, SHABANI J, MITRA A. Floquet Majorana zero and π modes in planar Josephson junctions[J]. Physical Review B, 2019, 99(9): 094303. [21] POTTER A C, MORIMOTO T, VISHWANATH A. Classification of interacting topological floquet phases in one dimension[J]. Physical Review X, 2016, 6(4): 041001. [22] CHENG Q Q, PAN Y M, WANG H Q, et al. Observation of anomalous π modes in photonic floquet engineering[J]. Physical Review Letters, 2019, 122(17): 173901. [23] ASBÓTH J K, TARASINSKI B, DELPLACE P. Chiral symmetry and bulk-boundary correspondence in periodically driven one-dimensional systems[J]. Physical Review B, 2014, 90(12): 125143. [24] DAL LAGO V, ATALA M, FOA TORRES L E F. Floquet topological transitions in a driven one-dimensional topological insulator[J]. Physical Review A, 2015, 92(2): 023624. [25] FRUCHART M. Complex classes of periodically driven topological lattice systems[J]. Physical Review B, 2016, 93(11): 115429.[26] BUKOV M, D′ALESSIO L, POLKOVNIKOV A. Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to Floquet engineering[J]. Advances in Physics, 2015, 64(2): 139-226. [27] ECKARDT A, ANISIMOVAS E. High-frequency approximation for periodically driven quantum systems from a Floquet-space perspective[J]. New Journal of Physics, 2015, 17(9): 093039. [28] SONG W G, CHEN Y X, LI H M, et al. Gauge-induced Floquet topological states in photonic waveguides[J]. Laser & Photonics Reviews, 2021, 15: 2000584. [29] JACKIW R, REBBI C. Solitons with fermion number 1/2[J]. Physical Review D, 1976, 13(12): 3398-3409. [30] CHERPAKOVA Z F, JÖRG C, DAUER C, et al. Limits of topological protection under local periodic driving[J]. Light: Science & Applications, 2019, 8: 63. [31] PAN Y M, WANG B. Time-crystalline phases and period-doubling oscillations in one-dimensional Floquet topological insulators[J]. Physical Review Research, 2020, 2(4): 043239. |