[1] ALY A H, NAGATY A, KHALIFA Z. Piezoelectric material and one-dimensional phononic crystal[J]. Surface Review and Letters, 2019, 26(2): 1850144. [2] KRIEGEL I, SCOTOGNELLA F, MANNA L. Plasmonic doped semiconductor nanocrystals: properties, fabrication, applications and perspectives[J]. Physics Reports, 2017, 674: 1-52. [3] WU F G, HOU Z L, LIU Z Y, et al. Point defect states in two-dimensional phononic crystals[J]. Physics Letters A, 2001, 292(3): 198-202. [4] 温熙森,温激泓,郁殿龙.声子晶体[M].北京:国防工业出版社,2009. WEN X S, WEN J H, YU D L. Phononic crystal[M]. Beijing: National Defense Industry Press, 2009(in Chinese). [5] WU X D, SUN L Z, ZUO S G, et al. Transfer path analysis and low-frequency vibration reduction by locally resonantphononic crystal[C]//SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2019-01-0786. [6] HE H, SHAO H B, HE C, et al. Study on the band gap optimization and defect state of two-dimensional honeycomb phononic crystals[J]. Journal of Materials Research, 2020, 35(21): 3021-3030. [7] 陈 鑫,姚 宏,赵静波,等.双局域共振Helmholtz声子晶体带隙研究[J].人工晶体学报,2019,48(1):13-17. CHEN X, YAO H, ZHAO J B, et al. Study on the bandgap of double local resonance Helmholtz phononic crystals[J]. Journal of Synthetic Crystals, 2019, 48(1): 13-17(in Chinese). [8] ZHAI H F, XIANG H, MA X F, et al. Optimal bandgaps of a spiral structure based on locally resonant phononic crystals[J]. International Journal of Modern Physics B, 2019, 33(22): 1950256. [9] 董亚科,杜 军,姚 宏,等.双包覆层局域共振型声子晶体带隙特性研究[J].人工晶体学报,2015,44(12):3676-3680. DONG Y K, DU J, YAO H, et al. Study on band gap characteristics ofphononic crystal composed by double coated layer[J]. Journal of Synthetic Crystals, 2015, 44(12): 3676-3680(in Chinese). [10] WANG X P, JIANG P, CHEN T N, et al. Tuning characteristic of band gap and waveguide in a multi-stub locally resonant phononic crystal plate[J]. AIP Advances, 2015, 5(10): 107141. [11] XU K, LI Z, ZHANG Y L, et al. An indirect approach based on Clausius-Clapeyron equation to determine entropy change for the first-order magnetocaloric materials[J]. Physics Letters A, 2015, 379(47/48): 3149-3154. [12] ZHANG G M, ZHAO L B, JIANG Z D, et al. Surface stress-induced deflection of a microcantilever with various widths and overall microcantilever sensitivity enhancement via geometry modification[J]. Journal of Physics D: Applied Physics, 2011, 44(42): 425402. [13] WANG Y F, WANG Y S. Complete bandgaps in two-dimensional phononic crystal slabs with resonators[J]. Journal of Applied Physics, 2013, 114(4): 043509. [14] JIN Y B, TORRENT D, PENNEC Y, et al. Simultaneous control of the S0 and A0 Lamb modes by graded phononic crystal plates[J]. Journal of Applied Physics, 2015, 117(24): 244904. [15] BENCHABANE S, GAIFFE O, SALUT R, et al. Guidance of surface waves in a micron-scale phononic crystal line-defect waveguide[J]. Applied Physics Letters, 2015, 106(8): 081903. [16] 郭翔鹰,孙向洋,朱雨男.二维正方晶格钨-硅橡胶声子晶体的带隙特性研究[J].人工晶体学报,2020,49(9):1583-1589. GUO X Y, SUN X Y, ZHU Y N. Characteristic of bandgaps in two-dimensional ternary lattice tungsten-silicone rubberphononic crystals[J]. Journal of Synthetic Crystals, 2020, 49(9): 1583-1589(in Chinese). [17] GOFFAUX C, SÁNCHEZ-DEHESA J, YEYATI A L, et al. Evidence of fano-like interference phenomena in locally resonant materials[J]. Physical Review Letters, 2002, 88(22): 225502. [18] GU Y W, LUO X D, MA H R. Low frequency elastic wave propagation in two dimensional locally resonant phononic crystal with asymmetric resonator[J]. Journal of Applied Physics, 2009, 105(4): 044903. [19] YAO Y W, WU F G, ZHANG X, et al. Lamb wave band gaps in locally resonant phononic crystal strip waveguides[J]. Physics Letters A, 2012, 376(4): 579-583. [20] WANG G, WEN X, WEN J, et al. Two-dimensional locally resonant phononic crystals with binary structures[J]. Physical Review Letters, 2004, 93(15): 154302. [21] HSU J C, WU T T. Lamb waves in binary locally resonant phononic plates with two-dimensional lattices[J]. Applied Physics Letters, 2007, 90(20): 201904. [22] QI X Q, LI T J, ZHANG J L, et al. Band gap structures for 2D phononic crystals with composite scatterer[J]. Applied Physics A, 2018, 124(5): 1-7. [23] BAGHERI NOURI M, MORADI M. Presentation and investigation of a new two dimensional heterostructure phononic crystal to obtain extended band gap[J]. Physica B: Condensed Matter, 2016, 489: 28-32. [24] QIAN D H. Wave propagation in a thermo-magneto-mechanical phononic crystal nanobeam with surface effects[J]. Journal of Materials Science, 2019, 54(6): 4766-4779. [25] MORADI P, BAHRAMI A. Design of an optomechanical filter based on solid/solid phoxonic crystals[J]. Journal of Applied Physics, 2018, 123(11): 115113. [26] XU Z, XU W, QIAN M L, et al. A flat acoustic lens to generate a Bessel-like beam[J]. Ultrasonics, 2017, 80: 66-71. [27] YAO L Y, HUANG G L, CHEN H, et al. A modified smoothed finite element method (M-SFEM) for analyzing the band gap in phononic crystals[J]. Acta Mechanica, 2019, 230(6): 2279-2293. [28] 张 昭,苏开创,韩星凯.单面柱声子晶体板低频带隙特性与机理分析[J].计算机辅助工程,2016,25(5):46-52. ZHANG Z, SU K C, HAN X K. Low frequency band gap property and mechanism analysis ofphononic crystal plate with one-sided columns[J]. Computer Aided Engineering, 2016, 25(5): 46-52(in Chinese). |