[1] MURARKA S P. Transition metal silicides: low resistivity alternatives for polysilicon and metals in integrated circuits[J]. JOM, 1984, 36(7): 57-60. [2] RAJ S. Melt infiltration studies of 2D Tyranno SA3@ ceramic matrix composite preforms with CrSi2 intermetallic alloy[J]. Journal of the American Ceramic Society, 2021, 104(7): 2966-2980. [3] BASYIR A, IZZUDDIN H, HERMANTO B, et al. Remarkable improvement in high temperature oxidation resistance of WC-12Co by the addition of CrSi2[J]. International Journal of Refractory Metals and Hard Materials, 2021, 96: 105497. [4] LIU F, LI H J, GU S Y, et al. Microstructure and oxidation property of CrSi2-ZrSi2-Y2O3/SiC coating prepared on C/C composites by supersonic atmosphere plasma spraying[J]. Surface and Coatings Technology, 2019, 374: 966-974. [5] LANGE H. Electronic properties of semiconducting silicides[J]. Physica Status Solidi (b), 1997, 201(1): 3-65. [6] TANUSILP S A, KUROSAKI K. Si-based materials for thermoelectric applications[J]. Materials, 2019, 12(12): 1943. [7] 闫万珺,张春红,周士芸,等.第一性原理计算Ti掺杂CrSi2的光电特性[J].原子与分子物理学报,2014,31(1):167-172. YAN W J, ZHANG C H, ZHOU S Y, et al. First principle calculation ofoptical-electrical characteristics of Ti-doped CrSi2[J]. Journal of Atomic and Molecular Physics, 2014, 31(1): 167-172(in Chinese). [8] 宋贵宏,柳晓彤,孟 雪,等.Ti掺杂的CrSi2纳米薄膜的微结构和热电性能[J].人工晶体学报,2015,44(8):2112-2117+2122. SONG G H, LIU X T, MENG X, et al. Microstructure and thermoelectric properties of Ti doped nano-sized CrSi2 thin films[J]. Journal of Synthetic Crystals, 2015, 44(8): 2112-2117+2122(in Chinese). [9] 周士芸,谢 泉,闫万珺,等.锰掺杂二硅化铬电子结构和光学性质的第一性原理计算[J].光学学报,2009,29(10):2848-2853. ZHOU S Y, XIE Q, YAN W J, et al. First-principles calculation of electronic structure and optical properties of CrSi2 with doping Mn[J]. Acta Optica Sinica, 2009, 29(10): 2848-2853(in Chinese). [10] CHEN S B, CHEN Y, YAN W J, et al. Magnetism and optical property of Mn-doped monolayer CrSi2 by first-principle study[J]. Journal of Superconductivity and Novel Magnetism, 2018, 31(9): 2759-2765. [11] NAGAI H, TAKAMATSU T, IIJIMA Y, et al. Improved thermoelectric performance from CrSi2 by Cu substitution into Si sites[J]. Japanese Journal of Applied Physics, 2018, 57(12): 121801. [12] 闫万珺,张忠政,郭笑天,等.第一性原理计算V-Al共掺杂CrSi2的光电特性[J].光学学报,2014,34(4):193-199. YAN W J, ZHANG Z Z, GUO X T, et al. First principles calculation on the photoelectric properties of V-Al co-doped CrSi2[J]. Acta Optica Sinica, 2014, 34(4): 193-199(in Chinese). [13] 闫万珺,周士芸,谢 泉,等.Al掺杂浓度对CrSi2电子结构及光学性质的影响[J].光学学报,2012,32(5):0516003. YAN W J, ZHOU S Y, XIE Q, et al. Effect of Al doping concentration on electronic and optical properties of CrSi2[J]. Acta Optica Sinica, 2012, 32(5): 0516003(in Chinese). [14] HOU Q R, GU B F, CHEN Y B. Enhancement of thermoelectric power factor in CrSi2 film via Si∶B addition[J]. International Journal of Modern Physics B, 2015, 29(27): 1550189. [15] 张忠政,张春红,闫万珺,等.稀土La掺杂CrSi2电子结构与光学性质的第一性原理研究[J].原子与分子物理学报,2014,31(4):652-656. ZHANG Z Z, ZHANG C H, YAN W J, et al. First principle study on electronic structure and optical properties of CrSi2 doped rare earth element La[J]. Journal of Atomic and Molecular Physics, 2014, 31(4): 652-656(in Chinese). [16] GOYAL M, SINHA M M. Effect of spin-orbital coupling on the electronic, mechanical, thermoelectric, and vibrational properties of XPtBi (X = Sc and Y): a first-principles study[J]. Journal of Physics and Chemistry of Solids, 2021, 153: 110024. [17] HASHIKUNI K, SUEKUNI K, USUI H, et al. A comparative study of thermoelectric Cu2TrTi3S8 (Tr=Co and Sc) thiospinels: enhanced Seebeck coefficient via electronic structure modification[J]. Journal of Alloys and Compounds, 2021, 871: 159548. [18] 张春红,张忠政,邓永荣,等.稀土(Sc、Y、La)掺杂CdS光电性质的第一性原理研究[J].四川大学学报(自然科学版),2017,54(1):108-114. ZHANG C H, ZHANG Z Z, DENG Y R, et al. First-principles study on photoelectric properties of CdS with doping rare earth(Sc, Y, La)[J]. Journal of Sichuan University (Natural Science Edition), 2017, 54(1): 108-114(in Chinese). [19] KHUILI M, FAZOUAN N, EL MAKARIM H A, et al. First-principles calculations of rare earth (RE=Tm, Yb, Ce) doped ZnO: structural, optoelectronic, magnetic, and electrical properties[J]. Vacuum, 2020, 181: 109603. [20] AHMADIAN F, ALINAJIMI R. First-principles study of half-metallic properties for the Heusler alloys Sc2CrZ (Z=C, Si, Ge, Sn)[J]. Computational Materials Science, 2013, 79: 345-351. [21] ARUL M J, JUDITH V J, BOUOUDINA M, et al. Investigation of structural, surface morphological, optical properties and first-principles study on electronic and magnetic properties of (Ce, Fe)-co doped ZnO[J]. Physica B: Condensed Matter, 2015, 456: 344-354. [22] KRIJN M, EPPENGA R. First-principles electronic structure and optical properties of CrSi2[J]. Physical Review B, Condensed Matter, 1991, 44(16): 9042-9044. [23] SEGALL M D, LINDAN P J D, PROBERT M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code[J]. Journal of Physics: Condensed Matter, 2002, 14(11): 2717-2744. [24] MILMAN V, REFSON K, CLARK S J, et al. Electron and vibrational spectroscopies using DFT, plane waves and pseudopotentials: castep implementation[J]. Journal of Molecular Structure: THEOCHEM, 2010, 954(1/2/3): 22-35. [25] MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations[J]. Physical Review B, 1976, 13(12): 5188-5192. [26] ZHOU S Y, XIE Q, YAN W J, et al. First-principle study on the electronic structure of stressed CrSi2[J]. Science in China Series G: Physics, Mechanics and Astronomy, 2009, 52(1): 76-81. [27] NISHIDA I, SAKATA T. Semiconducting properties of pure and Mn-doped chromium disilicides[J]. Journal of Physics and Chemistry of Solids, 1978, 39(5): 499-505. |