[1] ZHOU G J, SU B B, HUANG J L, et al. Broad-band emission in metal halide perovskites: mechanism, materials, and applications[J]. Materials Science and Engineering: R: Reports, 2020, 141: 100548. [2] ZHOU C K, LIN H R, HE Q Q, et al. Low dimensional metal halide perovskites and hybrids[J]. Materials Science and Engineering: R: Reports, 2019, 137: 38-65. [3] YANG B, YIN L X, NIU G D, et al. Lead-free halide Rb2CuBr3 as sensitive X-Ray scintillator[J]. Advanced Materials, 2019, 31(44): 1904711. [4] WU Y T, HAN D, CHAKOUMAKOS B C, et al. Zero-dimensional Cs4EuX6 (X=Br, I) all-inorganic perovskite single crystals for gamma-ray spectroscopy[J]. Journal of Materials Chemistry C, 2018, 6(25): 6647-6655. [5] CHENG S L, BEITLEROVA A, KUCERKOVA R, et al. Zero-dimensional Cs3Cu2I5 perovskite single crystal as sensitive X-ray and γ-ray scintillator[J]. Physica Status Solidi (RRL) - Rapid Research Letters, 2020, 14(11): 2000374. [6] XU Q, WANG J, SHAO W, et al. A solution-processed zero-dimensional all-inorganic perovskite scintillator for high resolution gamma-ray spectroscopy detection[J]. Nanoscale, 2020, 12(17): 9727-9732. [7] CHENG S, BEITLEROVA A, KUCERKOVA R, et al. Non-hygroscopic, self-absorption free, and efficient 1D CsCu2I3 perovskite single crystal for radiation detection[J]. ACS Applied Materials & Interfaces, 2021, 13(10): 12198-12202. [8] WEI J H, LIAO J F, WANG X D, et al. All-inorganic lead-free heterometallic Cs4MnBi2Cl12 perovskite single crystal with highly efficient orange emission[J]. Matter, 2020, 3(3): 892-903. [9] JUN T, SIM K, IIMURA S, et al. Lead-free highly efficient blue-emitting Cs3Cu2I5 with 0D electronic structure[J]. Advanced Materials, 2018, 30(43): 1804547. [10] STAND L, RUTSTROM D, KOSCHAN M, et al. Crystal growth and scintillation properties of pure and Tl-doped Cs3Cu2I5[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 991: 164963. [11] CHENG S L, NIKL M, BEITLEROVA A, et al. Ultrabright and highly efficient all-inorganic zero-dimensional perovskite scintillators[J]. Advanced Optical Materials, 2021, 9(13): 2100460. [12] YUAN D. Air-stable bulk halide single-crystal scintillator Cs3Cu2I5 by melt growth: intrinsic and Tl doped with high light yield[J]. ACS Applied Materials & Interfaces, 2020, 12(34): 38333-38340. [13] ROCCANOVA R, YANGUI A, NHALIL H, et al. Near-unity photoluminescence quantum yield in blue-emitting Cs3Cu2Br5-xIx(0≤x≤5)[J]. ACS Applied Electronic Materials, 2019, 1(3): 269-274. [14] LI Y, VASHISHTHA P, ZHOU Z, et al. Room temperature synthesis of stable, printable Cs3Cu2X5(X=I, Br/I, Br, Br/Cl, Cl) colloidal nanocrystals with near-unity quantum yield green emitters (X=Cl)[J]. Chemistry of Materials, 2020, 32(13):5515-5524. [15] LIAN L Y, ZHENG M Y, ZHANG P, et al. Photophysics in Cs3Cu2X5 (X=Cl, Br, or I): highly luminescent self-trapped excitons from local structure symmetrization[J]. Chemistry of Materials, 2020, 32(8): 3462-3468. [16] LUO Z S, LI Q, ZHANG L M, et al. 0D Cs3Cu2X5(X=I, Br, and Cl) nanocrystals: colloidal syntheses and optical properties[J]. Small, 2020, 16(3): 1905226. [17] KRISTIN P. Materials data on Cs3Cu2Br5 (SG:62) by materials project[EB/OL]. (2014-07) [2021-08-25]. https://materialsproject.org/materials/mp-582423. |