[1] ERIKSSON L, TOWNSEND D, ERIKSSON M, et al. Experience with scintillators for PET: towards the fifth generation of PET scanners[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 525(1/2): 242-248. [2] CONTI M. Focus on time-of-flight PET: the benefits of improved time resolution[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2011, 38(6): 1147-1157. [3] MUEHLLEHNER G, KARP J S. Positron emission tomography[J]. Physics in Medicine and Biology, 2006, 51(13): R117-R137. [4] BLAHUTA S, BESSIÈRE A, VIANA B, et al. Defects identification and effects of annealing on Lu2(1-x)Y2xSiO5 (LYSO) single crystals for scintillation application[J]. Materials, 2011, 4(7): 1224-1237. [5] DING D Z, FENG H, REN G H, et al. Air atmosphere annealing effects on LSO∶Ce crystal[J]. IEEE Transactions on Nuclear Science, 2010, 57(3): 1272-1277. [6] CHAI B. Method of enhancing performance of cerium doped lutetium yttrium orthosilicate crystals and crystals produced thereby: US7166845[P]. 2007-01-23. [7] SPURRIER M A, SZUPRYCZYNSKI P, YANG K, et al. Effects of Ca2+ co-doping on the scintillation properties of LSO∶Ce[J]. IEEE Transactions on Nuclear Science, 2008, 55(3): 1178-1182. [8] YANG K, MELCHER C L, RACK P D, et al. Effects of calcium codoping on charge traps in LSO∶Ce crystals[J]. IEEE Transactions on Nuclear Science, 2009, 56(5): 2960-2965. [9] BLAHUTA S, BESSIÈRE A, VIANA B, et al. Evidence and consequences of Ce4+ in LYSO∶Ce, Ca and LYSO∶Ce, Mg single crystals for medical imaging applications[J]. IEEE Transactions on Nuclear Science, 2013, 60(4): 3134-3141. [10] ZAGUMENNYI A I, ZAVARTSEV Y D, STUDENEKIN P A. Scintillating substance and scintillating wave-guide element: US6278832[P]. 2001-08-21. [11] STARZHINSKIY N G, SIDLETSKIY O T, TAMULAITIS G, et al. Improving of LSO(Ce) scintillator properties by co-doping[J]. IEEE Transactions on Nuclear Science, 2013, 60(2): 1427-1431. [12] MASALOV A A, VYAGIN O G, GANINA I I, et al. Effect of coactivation with Dy3+ and Yb3+ ions on the efficiency of energy storage in Lu2SiO5∶Ce3+ crystals[J]. Technical Physics Letters, 2009, 35(2): 154-157. [13] WU Y T, TIAN M K, PENG J, et al. On the role of Li+ codoping in simultaneous improvement of light yield, decay time, and afterglow of Lu2SiO5∶Ce3+ scintillation detectors[J]. Physica Status Solidi (RRL) - Rapid Research Letters, 2019, 13(2): 1800472. [14] ZAVARTSEV Y D, KOUTOVOI S A, ZAGUMENNYI A I. Czochralski growth and characterisation of large Ce3+∶Lu2SiO5 single crystals co-doped with Mg2+ or Ca2+ or Tb3+ for scintillators[J]. Journal of Crystal Growth, 2005, 275(1/2): e2167-e2171. [15] SPURRIER M A, SZUPRYCZYNSKI P, ROTHFUSS H, et al. The effect of co-doping on the growth stability and scintillation properties of lutetium oxyorthosilicate[J]. Journal of Crystal Growth, 2008, 310(7/8/9): 2110-2114. [16] WU Y T, KOSCHAN M, LI Q, et al. Revealing the role of calcium codoping on optical and scintillation homogeneity in Lu2SiO5∶Ce single crystals[J]. Journal of Crystal Growth, 2018, 498: 362-371. |