[1] STRANKS S D, EPERON G E, GRANCINI G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber[J]. Science, 2013, 342(6156): 341-344. [2] YANG W S, PARK B W, JUNG E H, et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells[J]. Science, 2017, 356(6345): 1376-1379. [3] SALIM T, SUN S Y, ABE Y, et al. Perovskite-based solar cells: impact of morphology and device architecture on device performance[J]. Journal of Materials Chemistry A, 2015, 3(17): 8943-8969. [4] NREL. Best research-cell efficiency chart[OL]. https://www.nrel.gov/pv/cell-efficiency.html, accessed March, 2020. [5] LIM K G, AHN S, KIM Y H, et al. Universal energy level tailoring of self-organized hole extraction layers in organic solar cells and organic-inorganic hybrid perovskite solar cells[J]. Energy & Environmental Science, 2016, 9(3): 932-939. [6] AGARWALA P, KABRA D. A review on triphenylamine (TPA) based organic hole transport materials (HTMs) for dye sensitized solar cells (DSSCs) and perovskite solar cells (PSCs): evolution and molecular engineering[J]. Journal of Materials Chemistry A, 2017, 5(4): 1348-1373. [7] XU B, BI D Q, HUA Y, et al. A low-cost spiro[fluorene-9, 9'-xanthene]-based hole transport material for highly efficient solid-state dye-sensitized solar cells and perovskite solar cells[J]. Energy & Environmental Science, 2016, 9(3): 873-877. [8] HUA Y, ZHANG J B, XU B, et al. Facile synthesis of fluorene-based hole transport materials for highly efficient perovskite solar cells and solid-state dye-sensitized solar cells[J]. Nano Energy, 2016, 26: 108-113. [9] TROISI A. Prediction of the absolute charge mobility of molecular semiconductors: the case of rubrene[J]. Advanced Materials, 2007, 19(15): 2000-2004. [10] GERSHENSON M E, PODZOROV V, MORPURGO A F. Colloquium: electronic transport in single-crystal organic transistors[J]. Reviews of Modern Physics, 2006, 78(3): 973-989. [11] MARCUS R A. Theory of electron-transfer reaction rates of solvated electrons[J]. The Journal of Chemical Physics, 1965, 43(10): 3477-3489. [12] COROPCEANU V, CORNIL J, DA SILVA FILHO D A, et al. Charge transport in organic semiconductors[J]. Chemical Reviews, 2007, 107(4): 926-952. [13] TE VELDE G, BICKELHAUPT F M, BAERENDS E J, et al. Chemistry with ADF[J]. Journal of Computational Chemistry, 2001, 22(9): 931-967. [14] SUNDAR V C, ZAUMSEIL J, PODZOROV V, et al. Elastomeric transistor stamps: reversible probing of charge transport in organic crystals[J]. Science, 2004, 303(5664): 1644-1646. [15] DENG W Q, SUN L, HUANG J D, et al. Quantitative prediction of charge mobilities of π-stacked systems by first-principles simulation[J]. Nature Protocols, 2015, 10(4): 632-642. [16] FRISCH M, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 09, Revision d. 01, Gaussian[J]. Inc., Wallingford CT, 2009, 201. [17] COSSI M, REGA N, SCALMANI G, et al. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model[J]. Journal of Computational Chemistry, 2003, 24(6): 669-681. [18] DAY G M, MOTHERWELL W D, AMMON H L, et al. A third blind test of crystal structure prediction[J]. Acta Crystallographica Section B, Structural Science, 2005, 61(pt 5): 511-527. [19] MARCUS R A. Chemical and electrochemical electron-transfer theory[J]. Annual Review of Physical Chemistry, 1964, 15(1): 155-196. [20] POLITZER P, MURRAY J S, CLARK T. Halogen bonding: an electrostatically-driven highly directional noncovalent interaction[J]. Physical Chemistry Chemical Physics, 2010, 12(28): 7748. [21] KIM K H, JUNG D H, KIM D, et al. Crystal structure prediction of organic materials: tests on the 1, 4-diketo-3, 6-diphenylpyrrolo(3, 4-c)pyrrole and 1, 4-diketo-3, 6-bis(4′-dipyridyl)-pyrrolo-[3, 4-c]pyrrole[J]. Dyes and Pigments, 2011, 89(1): 37-43. [22] ZHANG X Y, ZHAO G J. Anisotropic charge transport in bisindenoanthrazoline-based n-type organic semiconductors[J]. The Journal of Physical Chemistry C, 2012, 116(26): 13858-13864. |