[1] HWANG C, CHUNG T L, SANDERS E A. Attitudes and purchase intentions for smart clothing[J]. Clothing and Textiles Research Journal, 2016, 34(3): 207-222. [2] HUANG Q Y, WANG D R, ZHENG Z J. Textile-based electrochemical energy storage devices[J]. Advanced Energy Materials, 2016, 6(22): 1600783. [3] JIA L C, LI Y K, YAN D X. Flexible and efficient electromagnetic interference shielding materials from ground tire rubber[J]. Carbon, 2017, 121: 267-273. [4] NOVOSELOV K S, MISHCHENKO A, CARVALHO A, et al. 2D materials and van der Waals heterostructures[J]. Science, 2016, 353(6298): aac9439. [5] NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials, 2011, 23(37): 4248-4253. [6] MASHTALIR O, NAGUIB M, MOCHALIN V N, et al. Intercalation and delamination of layered carbides and carbonitrides[J]. Nature Communications, 2013, 4: 1716. [7] NAGUIB M, UNOCIC R R, ARMSTRONG B L, et al. Large-scale delamination of multi-layers transition metal carbides and carbonitrides “MXenes”[J]. Dalton Transactions, 2015, 44(20): 9353-9358. [8] ANASORI B, LUKATSKAYA M R, GOGOTSI Y. 2D metal carbides and nitrides (MXenes) for energy storage[J]. Nature Reviews Materials, 2017, 2: 16098. [9] DEYSHER G, SHUCK C E, HANTANASIRISAKUL K, et al. Synthesis of Mo4VAlC4 MAX phase and two-dimensional Mo4VC4 MXene with five atomic layers of transition metals[J]. ACS Nano, 2020, 14(1): 204-217. [10] TAO Q Z, DAHLQVIST M, LU J, et al. Two-dimensional Mo1.33C MXene with divacancy ordering prepared from parent 3D laminate with in-plane chemical ordering[J]. Nature Communications, 2017, 8: 14949. [11] ZHOU J, ZHA X, ZHOU X, et al. Synthesis and electrochemical properties of two-dimensional hafnium carbide[J]. ACS Nano, 2017, 11(4): 3841-3850. [12] PANG S Y, WONG Y T, YUAN S, et al. Universal strategy for HF-free facile and rapid synthesis of two-dimensional MXenes as multifunctional energy materials[J]. Journal of the American Chemical Society, 2019, 141(24): 9610-9616. [13] LI Y B, SHAO H, LIN Z F, et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte[J]. Nature Materials, 2020, 19(8): 894-899. [14] MASHTALIR O, NAGUIB M, DYATKIN B, et al. Kinetics of aluminum extraction from Ti3AlC2 in hydrofluoric acid[J]. Materials Chemistry and Physics, 2013, 139(1): 147-152. [15] WANG X F, SHEN X, GAO Y R, et al. Atomic-scale recognition of surface structure and intercalation mechanism of Ti3C2X[J]. Journal of the American Chemical Society, 2015, 137(7): 2715-2721. [16] GHIDIU M, LUKATSKAYA M R, ZHAO M Q, et al. Conductive two-dimensional titanium carbide ‘clay' with high volumetric capacitance[J]. Nature, 2014, 516(7529): 78-81. [17] HALIM J, LUKATSKAYA M R, COOK K M, et al. Transparent conductive two-dimensional titanium carbide epitaxial thin films[J]. Chemistry of Materials, 2014, 26(7): 2374-2381. [18] XIE X, XUE Y, LI L, et al. Surface Al leached Ti3AlC2 as a substitute for carbon for use as a catalyst support in a harsh corrosive electrochemical system[J]. Nanoscale, 2014, 6(19): 11035-11040. [19] LI G, TAN L, ZHANG Y, et al. Highly efficiently delaminated single-layered MXene nanosheets with large lateral size[J]. Langmuir, 2017, 33(36): 9000-9006. [20] ZHANG B, ZHU J F, SHI P, et al. Fluoride-free synthesis and microstructure evolution of novel two-dimensional Ti3C2(OH)2 nanoribbons as high-performance anode materials for lithium-ion batteries[J]. Ceramics International, 2019, 45(7): 8395-8405. [21] LI T F, YAO L L, LIU Q L, et al. Fluorine-free synthesis of high-purity Ti3C2Tx (T=OH, O) via alkali treatment[J]. Angewandte Chemie International Edition, 2018, 57(21): 6115-6119. [22] HUANG L J, LI T F, LIU Q L, et al. Fluorine-free Ti3C2Tx as anode materials for Li-ion batteries[J]. Electrochemistry Communications, 2019, 104: 106472. [23] YANG S, ZHANG P P, WANG F X, et al. Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using A binary aqueous system[J]. Angewandte Chemie International Edition, 2018, 57(47): 15491-15495. [24] LI M, LU J, LUO K, et al. Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes[J]. Journal of the American Chemical Society, 2019, 141(11): 4730-4737. [25] KAMYSBAYEV V, FILATOV A S, HU H C, et al. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes[J]. Science, 2020, 369(6506): 979-983. [26] GOGOTSI Y. Transition metal carbides go 2D[J]. Nature Materials, 2015, 14(11): 1079-1080. [27] LUKATSKAYA M R, KOTA S, LIN Z F, et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides[J]. Nature Energy, 2017, 2: 17105. [28] PAN X H, SHINDE N M, LEE M, et al. Controlled nanosheet morphology of titanium carbide Ti3C2Tx MXene via drying methods and its electrochemical analysis[J]. Journal of Solid State Electrochemistry, 2020, 24(3): 675-686. [29] HU Y, WANG L, LIN T R, et al. Radiation-induced self-assembly of Ti3C2Tx with improved electrochemical performance for supercapacitor[J]. Advanced Materials Interfaces, 2020, 7(6): 1901839. [30] MA Y L, SHENG H W, DOU W, et al. Fe2O3 nanoparticles anchored on the Ti3C2Tx MXene paper for flexible supercapacitors with ultrahigh volumetric capacitance[J]. ACS Applied Materials & Interfaces, 2020, 12(37): 41410-41418. [31] FU J, YUN J, WU S, et al. Architecturally robust graphene-encapsulated MXene Ti2CTx@Polyaniline composite for high-performance pouch-type asymmetric supercapacitor[J]. ACS Applied Materials & Interfaces, 2018, 10(40): 34212-34221. [32] ZHAO D, CLITES M, YING G, et al. Alkali-induced crumpling of Ti3C2Tx (MXene) to form 3D porous networks for sodium ion storage[J]. Chemical Communications, 2018, 54(36): 4533-4536. [33] ZHANG X F, LIU X D, YAN R Z, et al. Ion-assisted self-assembly of macroporous MXene films as supercapacitor electrodes[J]. Journal of Materials Chemistry C, 2020, 8(6): 2008-2013. [34] FAN Z M, WANG Y S, XIE Z M, et al. Modified MXene/holey graphene films for advanced supercapacitor electrodes with superior energy storage[J]. Advanced Science, 2018, 5(10): 1800750. [35] YU P, CAO G, YI S, et al. Binder-free 2D titanium carbide (MXene)/carbon nanotube composites for high-performance lithium-ion capacitors[J]. Nanoscale, 2018, 10(13): 5906-5913. [36] LI H Y, HOU Y, WANG F X, et al. Flexible all-solid-state supercapacitors with high volumetric capacitances boosted by solution processable MXene and electrochemically exfoliated graphene[J]. Advanced Energy Materials, 2017, 7(4): 1601847. [37] ZHAO C J, WANG Q, ZHANG H, et al. Two-dimensional titanium carbide/RGO composite for high-performance supercapacitors[J]. ACS Applied Materials & Interfaces, 2016, 8(24): 15661-15667. [38] VAHIDMOHAMMADI A, MONCADA J, CHEN H Z, et al. Thick and freestanding MXene/PANI pseudocapacitive electrodes with ultrahigh specific capacitance[J]. Journal of Materials Chemistry A, 2018, 6(44): 22123-22133. [39] ZHANG X B, SHAO B Y, GUO A P, et al. MnO2 nanoshells/Ti3C2Tx MXene hybrid film as supercapacitor electrode[J]. Applied Surface Science, 2021, 560: 150040. [40] ZHOU Z H, PANATDASIRISUK W, MATHIS T S, et al. Layer-by-layer assembly of MXene and carbon nanotubes on electrospun polymer films for flexible energy storage[J]. Nanoscale, 2018, 10(13): 6005-6013. [41] TIAN Y P, YANG C H, QUE W X, et al. Ni foam supported quasi-core-shell structure of ultrathin Ti3C2 nanosheets through electrostatic layer-by-layer self-assembly as high rate-performance electrodes of supercapacitors[J]. Journal of Power Sources, 2017, 369: 78-86. [42] YUN J, ECHOLS I, FLOUDA P, et al. Layer-by-layer assembly of reduced graphene oxide and MXene nanosheets for wire-shaped flexible supercapacitors[J]. ACS Applied Materials & Interfaces, 2021, 13(12): 14068-14076. [43] ZHANG C F, MCKEON L, KREMER M P, et al. Additive-free MXene inks and direct printing of micro-supercapacitors[J]. Nature Communications, 2019, 10: 1795. [44] ORANGI J, HAMADE F, DAVIS V A, et al. 3D printing of additive-free 2D Ti3C2Tx (MXene) ink for fabrication of micro-supercapacitors with ultra-high energy densities[J]. ACS Nano, 2020, 14(1): 640-650. [45] SHAO L, XU J J, MA J Z, et al. MXene/RGO composite aerogels with light and high-strength for supercapacitor electrode materials[J]. Composites Communications, 2020, 19: 108-113. [46] LIU D S, ASHCRAFT J N, MANNARINO M M, et al. Spray layer-by-layer electrospun composite proton exchange membranes[J]. Advanced Functional Materials, 2013, 23(24): 3087-3095. [47] TIAN W, VAHIDMOHAMMADI A, WANG Z, et al. Layer-by-layer self-assembly of pillared two-dimensional multilayers[J]. Nature Communications, 2019, 10(1): 2558. [48] WU C W, UNNIKRISHNAN B, CHEN I W P, et al. Excellent oxidation resistive MXene aqueous ink for micro-supercapacitor application[J]. Energy Storage Materials, 2020, 25: 563-571. [49] ZHENG S H, WANG H, DAS P, et al. Multitasking MXene inks enable high-performance printable microelectrochemical energy storage devices for all-flexible self-powered integrated systems[J]. Advanced Materials, 2021, 33(10): 2005449. [50] CHEN H, MA H, ZHANG P, et al. Pristine titanium carbide MXene hydrogel matrix[J]. ACS Nano, 2020, 14(8): 10471-10479. [51] YUE Y, LIU N, MA Y, et al. Highly self-healable 3D microsupercapacitor with MXene-graphene composite aerogel[J]. ACS Nano, 2018, 12(5): 4224-4232. [52] MU X P, WANG D S, DU F, et al. Revealing the pseudo-intercalation charge storage mechanism of MXenes in acidic electrolyte[J]. Advanced Functional Materials, 2019, 29(29): 1902953. [53] GUO B Y, TIAN J, YIN X L, et al. A binder-free electrode based on Ti3C2Tx-rGO aerogel for supercapacitors[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 595: 124683 |