人工晶体学报 ›› 2022, Vol. 51 ›› Issue (1): 3-20.
王国宾1,2, 李辉1, 盛达1,2, 王文军1,2,3, 陈小龙1,2,3
收稿日期:
2021-09-06
出版日期:
2022-01-15
发布日期:
2022-02-09
通讯作者:
陈小龙,博士,研究员。E-mail:chenx29@iphy.ac.cn作者简介:
王国宾(1995—),男,山西省人,博士研究生。E-mail:wangguobin18@mails.ucas.ac.cn
基金资助:
WANG Guobin1,2, LI Hui1, SHENG Da1,2, WANG Wenjun1,2,3, CHEN Xiaolong1,2,3
Received:
2021-09-06
Online:
2022-01-15
Published:
2022-02-09
摘要: 碳化硅(SiC)作为第三代半导体材料,不仅禁带宽度较大,还兼具热导率高、饱和电子漂移速率高、抗辐射性能强、热稳定性和化学稳定性好等优良特性,在高温、高频、高功率电力电子器件和射频器件中有很好的应用潜力。高质量、大尺寸、低成本SiC单晶衬底的制备是实现SiC器件大规模应用的前提。受技术与工艺水平限制,目前SiC单晶衬底供应仍面临缺陷密度高、成品率低和成本高等问题。高温溶液生长(high temperature solution growth, HTSG)法生长SiC单晶具有晶体结晶质量高、易扩径、易实现p型掺杂等独特的优势,有望成为大规模量产SiC单晶的主要方法之一,目前该方法的主流技术模式是顶部籽晶溶液生长(top seeded solution growth, TSSG)法。本文首先回顾总结了TSSG法生长SiC单晶的发展历程,接着介绍和分析了该方法的基本原理和生长过程,然后从晶体生长热力学和动力学两方面总结了该方法的研究进展,并归纳了该方法的优势,最后分析了TSSG法生长SiC单晶技术在未来的研究重点和发展方向。
中图分类号:
王国宾, 李辉, 盛达, 王文军, 陈小龙. 高温溶液法生长SiC单晶的研究进展[J]. 人工晶体学报, 2022, 51(1): 3-20.
WANG Guobin, LI Hui, SHENG Da, WANG Wenjun, CHEN Xiaolong. Research Progress on the Growth of SiC Single Crystal via High Temperature Solution Growth Method[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(1): 3-20.
[1] KIMOTO T. Material science and device physics in SiC technology for high-voltage power devices[J]. Japanese Journal of Applied Physics, 2015, 54(4): 040103. [2] HAMADA K, NAGAO M, AJIOKA M, et al. SiC: emerging power device technology for next-generation electrically powered environmentally friendly vehicles[J]. IEEE Transactions on Electron Devices, 2015, 62(2): 278-285. [3] OKUMURA H. Present status and future prospect of widegap semiconductor high-power devices[J]. Japanese Journal of Applied Physics, 2006, 45(10A): 7565-7586. [4] POWELL A R, SUMAKERIS J J, KHLEBNIKOV Y, et al. Bulk growth of large area SiC crystals[J]. Materials Science Forum, 2016, 858: 5-10. [5] NARUMI T, CHAUSSENDE D, YOSHIKAWA T. 3C-, 4H-, and 6H-SiC crystal habitus and interfacial behaviours in high temperature Si-based solvents[J]. CrystEngComm, 2020, 22(20): 3489-3496. [6] KAWANISHI S, NAGAMATSU Y, YOSHIKAWA T, et al. Availability of Cr-rich Cr-Si solvent for rapid solution growth of 4H-SiC[J]. Journal of Crystal Growth, 2020, 549: 125877. [7] HYUN K, KIM S J, TAISHI T. Effect of cobalt addition to Si-Cr solvent in top-seeded solution growth[J]. Applied Surface Science, 2020, 513: 145798. [8] TOKUDA Y, UEHIGASHI H, MURATA K, et al. Fabrication of 4H-SiC PiN diodes on substrate grown by HTCVD method[J]. Japanese Journal of Applied Physics, 2020, 59(SG): SGGD07. [9] TOKUDA Y, MAKINO E, SUGIYAMA N, et al. Stable and high-speed SiC bulk growth without dendrites by the HTCVD method[J]. Journal of Crystal Growth, 2016, 448: 29-35. [10] TOKUDA Y, HOSHINO N, KUNO H, et al. Fast 4H-SiC bulk growth by high-temperature gas source method[J]. Materials Science Forum, 2020, 1004: 5-13. [11] OKAMOTO T, KANDA T, TOKUDA Y, et al. Development of 150-mm 4H-SiC substrates using a high-temperature chemical vapor deposition method[J]. Materials Science Forum, 2020, 1004: 14-19. [12] HOFMANN D H, MÜLLER M H. Prospects of the use of liquid phase techniques for the growth of bulk silicon carbide crystals[J]. Materials Science and Engineering: B, 1999, 61/62: 29-39. [13] 刘春俊.SiC单晶生长技术研究现状[J].中国照明电器,2017(10):18-21. LIU C J. Research status of SiC single crystal growth[J]. China Light & Lighting, 2017(10): 18-21(in Chinese). [14] DAIKOKU H, KADO M, SEKI A, et al. Solution growth on concave surface of 4H-SiC crystal[J]. Crystal Growth & Design, 2016, 16(3): 1256-1260. [15] EPELBAUM B M, HOFMANN D, MÜLLER M, et al. Top-seeded solution growth of bulk SiC: search for fast growth regimes[J]. Materials Science Forum, 2000, 338/339/340/341/342: 107-110. [16] KUSUNOKI K, MUNETOH S, KAMEI K, et al. Solution growth of self-standing 6H-SiC single crystal using metal solvent[J]. Materials Science Forum, 2004, 457/458/459/460: 123-126. [17] KUSUNOKI K, KAMEI K, UEDA Y, et al. Crystalline quality evaluation of 6H-SiC bulk crystals grown from Si-Ti-C ternary solution[J]. Materials Science Forum, 2005, 483/484/485: 13-16. [18] KUSUNOKI K, KAMEI K, OKADA N, et al. Solution growth of SiC crystal with high growth rate using accelerated crucible rotation technique[J]. Materials Science Forum, 2006, 527/528/529: 119-122. [19] KAMEI K, KUSUNOKI K, YASHIRO N, et al. Solution growth of single crystalline 6H, 4H-SiC using Si-Ti-C melt[J]. Journal of Crystal Growth, 2009, 311(3): 855-858. [20] YASHIRO N, KUSUNOKI K, KAMEI K, et al. Solution growth and crystallinity characterization of bulk 6H-SiC[J]. Materials Science Forum, 2010, 645/646/647/648: 33-36. [21] KUSUNOKI K, YASHIRO N, OKADA N, et al. Growth of large diameter 4H-SiC by TSSG technique[J]. Materials Science Forum, 2013, 740/741/742: 65-68. [22] KUSUNOKI K, KAMEI K, OKADA N, et al. Top-seeded solution growth of 3 inch diameter 4H-SiC bulk crystal using metal solvents[J]. Materials Science Forum, 2014, 778/779/780: 79-82. [23] DANNO K, SAITOH H, SEKI A, et al. High-speed growth of high-quality 4H-SiC bulk by solution growth using Si-Cr based melt[J]. Materials Science Forum, 2010, 645/646/647/648: 13-16. [24] KUSUNOKI K, KISHIDA Y, SEKI K. Solution growth of 4-inch diameter SiC single crystal using Si-Cr based solvent[J]. Materials Science Forum, 2019, 963: 85-88. [25] DAIKOKU H, KADO M, SAKAMOTO H, et al. Top-seeded solution growth of 4H-SiC bulk crystal using Si-Cr based melt[J]. Materials Science Forum, 2012, 717/718/719/720: 61-64. [26] KADO M, DAIKOKU H, SAKAMOTO H, et al. High-speed growth of 4H-SiC single crystal using Si-Cr based melt[J]. Materials Science Forum, 2013, 740/741/742: 73-76. [27] KUSUNOKI K, SEKI K, KISHIDA Y, et al. Development of solvent inclusion free 4H-SiC off-axis wafer grown by the top-seeded solution growth technique[J]. Materials Science Forum, 2018, 924: 31-34. [28] ZHANG Z S, CHEN L, DENG J, et al. Intrinsic ferromagnetism in 4H-SiC single crystal induced by Al-doping[J]. Applied Physics A, 2020, 126(9): 1-8. [29] YAKIMOVA R, TUOMINEN M, BAKIN A S, et al. Silicon carbide liquid phase epitaxy in the Si-Sc-C system[M]//NAKASHIMA S, MATSUNAMI H, YOSHIDA S, et al. Silicon Carbide and Related Materials 1995. Bristol; Iop Publishing Ltd. 1996: 101-104. [30] NELSON W E, HALDEN F A, ROSENGREEN A. Growth and properties of β-SiC single crystals[J]. Journal of Applied Physics, 1966, 37(1): 333-336. [31] CHAUSSENDE D, OHTANI N. Silicon carbide[M]//Single Crystals of Electronic Materials. Amsterdam: Elsevier, 2019: 129-179. [32] KAWAMURA F, OGURA T, IMADE M, et al. Growth of 2H-SiC single crystals in a Li-based flux[J]. Materials Letters, 2008, 62(6/7): 1048-1051. [33] IMADE M, OGURA T, UEMURA M, et al. Growth of 2H-SiC single crystals in a C-Li-Si ternary melt system[J]. Materials Science Forum, 2008, 600/601/602/603: 55-58. [34] SUZUKI K, KUSUNOKI K, YASHIRO N, et al. Solution growth of single crystalline 6H-SiC from Si-Ti-C ternary solution[J]. Key Engineering Materials, 2007, 352: 89-94. [35] HATTORI R, KUSUNOKI K, YASHIRO N, et al. Solution growth of off-axis 4H-SiC for power device application[J]. Materials Science Forum, 2008, 600/601/602/603: 179-182. [36] TANAKA R, SEKI K, KOMIYAMA S, et al. Solution growth of SiC crystals In Si-Ti and Si-Ge-Ti solvents[J]. Materials Science Forum, 2008, 600/601/602/603: 59-62. [37] KAMEI K, KUSUNOKI K, YASHIRO N, et al. Crystallinity evaluation of 4H-SiC single crystal grown by solution growth technique using Si-Ti-C solution[J]. Materials Science Forum, 2012, 717/718/719/720: 45-48. [38] KUSUNOKI K, OKADA N, KAMEI K, et al. Top-seeded solution growth of three-inch-diameter 4H-SiC using convection control technique[J]. Journal of Crystal Growth, 2014, 395: 68-73. [39] KUSUNOKI K, KAMEI K, SEKI K, et al. Nitrogen doping of 4H-SiC by the top-seeded solution growth technique using Si-Ti solvent[J]. Journal of Crystal Growth, 2014, 392: 60-65. [40] SHIRAI T, DANNO K, SEKI A, et al. Solution growth of p-type 4H-SiC bulk crystals with low resistivity[J]. Materials Science Forum, 2014, 778/779/780: 75-78. [41] MITANI T, KOMATSU N, TAKAHASHI T, et al. 4H-SiC growth from Si-Cr-C solution under Al and N co-doping conditions[J]. Materials Science Forum, 2015, 821/822/823: 9-13. [42] DANNO K, YAMAGUCHI S, KIMOTO H, et al. Trials of solution growth of dislocation-free 4H-SiC bulk crystals[J]. Materials Science Forum, 2016, 858: 19-22. [43] HYUN K Y, TAISHI T, SUZUKI K, et al. Experimental determination of carbon solubility in Si0.56Cr0.4M0.04 (M=transition metal) solvents for solution growth of SiC[J]. Materials Science Forum, 2018, 924: 43-46. [44] KOMATSU N, MITANI T, HAYASHI Y, et al. Influence of additives on surface smoothness and polytype stability in solution growth of n-type 4H-SiC[J]. Materials Science Forum, 2018, 924: 55-59. [45] TAISHI T, TAKAHASHI M, TSUCHIMOTO N, et al. Solution growth of SiC from the crucible bottom with dipping under unsaturation state of carbon in solvent[J]. Materials Science Forum, 2018, 924: 51-54. [46] HYUN K, KIM S J, TAISHI T. Estimation of C solubility at SiC saturation from the reaction of carbon crucible with Si-Cr solvent for top-seeded solution growth[J]. Acta Physica Polonica A, 2019, 135(5): 1012-1017. [47] KAWANISHI S, YOSHIKAWA T, SHIBATA H. Thermomigration of molten Cr-Si-C alloy in 4H-SiC at 1 873~2 273 K[J]. Journal of Crystal Growth, 2019, 518: 73-80. [48] YOSHIKAWA T, KAWANISHI S, TANAKA T. Solution growth of silicon carbide using Fe-Si solvent[J]. Japanese Journal of Applied Physics, 2010, 49(5): 051302. [49] KAWANISHI S, YOSHIKAWA T, MORITA K, et al. Solution growth behavior of SiC by a temperature difference method using Fe-Si solvent[J]. Journal of Crystal Growth, 2013, 381: 121-126. [50] KAWANISHI S, YOSHIKAWA T. In situ interface observation of 3C-SiC nucleation on basal planes of 4H-SiC during solution growth of SiC from molten Fe-Si alloy[J]. JOM, 2018, 70(7): 1239-1247. [51] SEKI K, ALEXANDER, KOZAWA S, et al. Formation process of 3C-SiC on 6H-SiC (0001) by low-temperature solution growth in Si-Sc-C system[J]. Journal of Crystal Growth, 2011, 335(1): 94-99. [52] MARUYAMA S, ONUMA A, KURASHIGE K, et al. High-throughput screening of Si-Ni flux for SiC solution growth using a high-temperature laser microscope observation and secondary ion mass spectroscopy depth profiling[J]. ACS Combinatorial Science, 2013, 15(6): 287-290. [53] GAO M X, PAN Y, OLIVEIRA F J, et al. The growth of SiC crystals from CoSi molten alloy fluxes[J]. Materials Science Forum, 2006, 514/515/516: 343-347. [54] HARADA S, HATASA G, MURAYAMA K, et al. Solvent design for high-purity SiC solution growth[J]. Materials Science Forum, 2017, 897: 32-35. [55] HORIO A, HARADA S, KOIKE D, et al. Polytype control by activity ratio of silicon to carbon during SiC solution growth using multicomponent solvents[J]. Japanese Journal of Applied Physics, 2016, 55(1S): 01AC01. [56] KOMATSU N, MITANI T, TAKAHASHI T, et al. Change in surface morphology by addition of impurity elements in 4H-SiC solution growth with Si solvent[J]. Materials Science Forum, 2015, 821/822/823: 14-17. [57] MITANI T, KOMATSU N, TAKAHASHI T, et al. Effect of aluminum addition on the surface step morphology of 4H-SiC grown from Si-Cr-C solution[J]. Journal of Crystal Growth, 2015, 423: 45-49. [58] KOMATSU N, MITANI T, HAYASHI Y, et al. Modification of the surface morphology of 4H-SiC by addition of Sn and Al in solution growth with SiCr solvents[J]. Journal of Crystal Growth, 2017, 458: 37-43. [59] DAIKOKU H, KAWANISHI S, ISHIKAWA T, et al. Density, surface tension, and viscosity of liquid Si-Cr alloys and influence on temperature and fluid flow during solution growth of SiC[J]. The Journal of Chemical Thermodynamics, 2021, 160: 106476. [60] ZHU C, HARADA S, SEKI K, et al. Influence of solution flow on step bunching in solution growth of SiC crystals[J]. Crystal Growth & Design, 2013, 13(8): 3691-3696. [61] KURASHIGE K, AOSHIMA M, TAKEI K, et al. Effect of forced convection by crucible design in solution growth of SiC single crystal[J]. Materials Science Forum, 2015, 821/822/823: 22-25. [62] ARIYAWONG K, SHIN Y J, DEDULLE J M, et al. Analysis of macrostep formation during top seeded solution growth of 4H-SiC[J]. Crystal Growth & Design, 2016, 16(6): 3231-3236. [63] HAYASHI Y, MITANI T, KOMATSU N, et al. Control of temperature distribution to suppress macro-defects in solution growth of 4H-SiC crystals[J]. Journal of Crystal Growth, 2019, 523: 125151. [64] LIU B T, YU Y, TANG X, et al. Optimization of crucible and heating model for large-sized silicon carbide ingot growth in top-seeded solution growth[J]. Journal of Crystal Growth, 2020, 533: 125406. [65] KIM Y G, CHOI S H, SHIN Y J, et al. Modification of crucible shape in top seeded solution growth of SiC crystal[J]. Materials Science Forum, 2018, 924: 47-50. [66] HA M T, YU Y J, SHIN Y J, et al. Flow modification enhancing the growth rate in top seeded solution growth of SiC crystals[J]. RSC Advances, 2019, 9(45): 26327-26337. [67] MERCIER F, DEDULLE J M, CHAUSSENDE D, et al. Coupled heat transfer and fluid dynamics modeling of high-temperature SiC solution growth[J]. Journal of Crystal Growth, 2010, 312(2): 155-163. [68] MERCIER F, NISHIZAWA S I. Comparative numerical study of the effects of rotating and traveling magnetic fields on the carbon transport in the solution growth of SiC crystals[J]. Journal of Crystal Growth, 2013, 362: 99-102. [69] TAKEHARA Y, SEKIMOTO A, OKANO Y, et al. Explainable machine learning for the analysis of transport phenomena in top-seeded solution growth of SiC single crystal[J]. Journal of Thermal Science and Technology, 2021, 16(1): JTST0009. [70] TAKEHARA Y, SEKIMOTO A, OKANO Y, et al. Bayesian optimization for a high- and uniform-crystal growth rate in the top-seeded solution growth process of silicon carbide under applied magnetic field and seed rotation[J]. Journal of Crystal Growth, 2020, 532: 125437. [71] WANG L, HORIUCHI T, SEKIMOTO A, et al. Three-dimensional numerical analysis of Marangoni convection occurring during the growth process of SiC by the RF-TSSG method[J]. Journal of Crystal Growth, 2019, 520: 72-81. [72] LIU B T, YU Y, TANG X, et al. Improvement of growth interface stability for 4-inch silicon carbide crystal growth in TSSG[J]. Crystals, 2019, 9(12): 653. [73] LIU B T, YU Y, TANG X, et al. Influence of silicon melt convection on interface instability in large-size silicon carbide solution growth[J]. Journal of Crystal Growth, 2019, 527: 125248. [74] HORIUCHI T, WANG L, SEKIMOTO A, et al. The effect of crucible rotation and crucible size in top-seeded solution growth of single-crystal silicon carbide[J]. Crystal Research and Technology, 2019, 54(5): 1900014. [75] HORIUCHI T, WANG L, SEKIMOTO A, et al. Adjoint-based sensitivity analysis for the optimal crucible temperature profile in the RF-Heating TSSG-SiC crystal growth process[J]. Journal of Crystal Growth, 2019, 517: 59-63. [76] HA M T, SHIN Y J, BAE S Y, et al. Effect of hot-zone aperture on the growth behavior of SiC single crystal produced via top-seeded solution growth method[J]. Journal of the Korean Ceramic Society, 2019, 56(6): 589-595. [77] WANG L, HORIUCHI T, SEKIMOTO A, et al. Numerical investigation of the effect of static magnetic field on the TSSG growth of SiC[J]. Journal of Crystal Growth, 2018, 498: 140-147. [78] LEFEBURE J, DEDULLE J M, OUISSE T, et al. Modeling of the growth rate during top seeded solution growth of SiC using pure silicon as a solvent[J]. Crystal Growth & Design, 2012, 12(2): 909-913. [79] MUKAIYAMA Y, IIZUKA M, VOROB'EV A, et al. Numerical investigation of the effect of shape change in graphite crucible during top-seeded solution growth of SiC[J]. Journal of Crystal Growth, 2017, 475: 178-185. [80] YAMAMOTO T, ADKAR N, OKANO Y, et al. Numerical investigation of the transport phenomena occurring in the growth of SiC by the induction heating TSSG method[J]. Journal of Crystal Growth, 2017, 474: 50-54. [81] YAMAMOTO T, OKANO Y, UJIHARA T, et al. Global simulation of the induction heating TSSG process of SiC for the effects of Marangoni convection, free surface deformation and seed rotation[J]. Journal of Crystal Growth, 2017, 470: 75-88. [82] HA M T, SHIN Y J, LEE M H, et al. Effects of the temperature gradient near the crystal-melt interface in top seeded solution growth of SiC crystal[J]. Physica Status Solidi (a), 2018, 215(20): 1701017. [83] TSUNOOKA Y, KOKUBO N, HATASA G, et al. High-speed prediction of computational fluid dynamics simulation in crystal growth[J]. CrystEngComm, 2018, 20(41): 6546-6550. [84] KAWANISHI S, KAMIKO M, YOSHIKAWA T, et al. Analysis of the spiral step structure and the initial solution growth behavior of SiC by real-time observation of the growth interface[J]. Crystal Growth & Design, 2016, 16(9): 4822-4830. [85] ONUMA A, MARUYAMA S, KOMATSU N, et al. Quantitative analysis of nanoscale step dynamics in high-temperature solution-grown single crystal 4H-SiC via in situ confocal laser scanning microscope[J]. Crystal Growth & Design, 2017, 17(5): 2844-2851. [86] YAKIMOVA R, TUOMINEN M, BAKIN A S, et al. Silicon carbide liquid phase epitaxy in the Si-Sc-C system[C]∥proceedings of the International Conference on Silicon Carbide and Related Materials 1995 (ICSCRM-95). Iop Publishing Ltd: BRISTOL, 1996. [87] KHAN M N, NISHIZAWA S I, ARAI K. Healing defects in SiC wafers by liquid-phase epitaxy in Si melts[J]. Journal of Crystal Growth, 2003, 254(1/2): 137-143. [88] UJIHARA T, MUNETOH S, KUSUNOKI K, et al. Crystal quality evaluation of 6H-SiC layers grown by liquid phase epitaxy around micropipes using micro-Raman scattering spectroscopy[J]. Materials Science Forum, 2004, 457/458/459/460: 633-636. [89] UJIHARA T, MUNETOH S, KUSUNOKI K, et al. Crystal quality of a 6H-SiC layer grown over macrodefects by liquid-phase epitaxy: a Raman spectroscopic study[J]. Thin Solid Films, 2005, 476(1): 206-209. [90] KUSUNOKI K, KAMEI K, YASHIRO N, et al. Liquid phase epitaxy of 4H-SiC layers on on-axis PVT grown substrates[J]. Materials Science Forum, 2009, 615/616/617: 137-140. [91] UJIHARA T, KOZAWA S, SEKI K, et al. Conversion mechanism of threading screw dislocation during SiC solution growth[J]. Materials Science Forum, 2012, 717/718/719/720: 351-354. [92] YAMAMOTO Y, HARADA S, SEKI K, et al. High-efficiency conversion of threading screw dislocations in 4H-SiC by solution growth[J]. Applied Physics Express, 2012, 5(11): 115501. [93] HARADA S, YAMAMOTO Y, SEKI K, et al. Evolution of threading screw dislocation conversion during solution growth of 4H-SiC[J]. APL Materials, 2013, 1(2): 022109. [94] HARADA S, YAMAMOTO Y, SEKI K, et al. Reduction of threading screw dislocation utilizing defect conversion during solution growth of 4H-SiC[J]. Materials Science Forum, 2013, 740/741/742: 189-192. [95] YAMAMOTO Y, HARADA S, SEKI K, et al. Effect of surface polarity on the conversion of threading dislocations in solution growth[J]. Materials Science Forum, 2013, 740/741/742: 15-18. [96] HARADA S, YAMAMOTO Y, SEKI K, et al. Different behavior of threading edge dislocation conversion during the solution growth of 4H-SiC depending on the Burgers vector[J]. Acta Materialia, 2014, 81: 284-290. [97] YAMAMOTO Y, HARADA S, SEKI K, et al. Low-dislocation-density 4H-SiC crystal growth utilizing dislocation conversion during solution method[J]. Applied Physics Express, 2014, 7(6): 065501. [98] HARADA S, YAMAMOTO Y, XIAO S, et al. Dislocation conversion during SiC solution growth for high-quality crystals[J]. Materials Science Forum, 2015, 821/822/823: 3-8. [99] XIAO S Y, HARADA S, MURAYAMA K, et al. Conversion behavior of threading screw dislocations on C face with different surface morphology during 4H-SiC solution growth[J]. Crystal Growth & Design, 2016, 16(11): 6436-6439. [100] KOMATSU N, MITANI T, HAYASHI Y, et al. Application of defect conversion layer by solution growth for reduction of TSDs in 4H-SiC bulk crystals by PVT growth[J]. Materials Science Forum, 2019, 963: 71-74. [101] LIU X B, ZHU C, HARADA S, et al. Application of C-face dislocation conversion to 2 inch SiC crystal growth on an off-axis seed crystal[J]. CrystEngComm, 2019, 21(47): 7260-7265. [102] HAN L B, LIANG L, KANG Y, et al. A review of SiC IGBT: models, fabrications, characteristics, and applications[J]. IEEE Transactions on Power Electronics, 2021, 36(2): 2080-2093. [103] STRAUBINGER T L, BICKERMANN M, WEINGÄRTNER R, et al. Aluminum p-type doping of silicon carbide crystals using a modified physical vapor transport growth method[J]. Journal of Crystal Growth, 2002, 240(1/2): 117-123. [104] RASTEGAEV V P, AVROV D D, RESHANOV S A, et al. Features of SiC single-crystals grown in vacuum using the LETI method[J]. Materials Science and Engineering: B, 1999, 61/62: 77-81. |
[1] | 史少辉, 方震宇, 汪宏. 溶剂蒸汽退火辅助微距升华法制备C8-BTBT单晶[J]. 人工晶体学报, 2022, 51(1): 42-48. |
[2] | 开翠红, 王蓉, 杨德仁, 皮孝东. 基于碳化硅衬底的宽禁带半导体外延[J]. 人工晶体学报, 2021, 50(9): 1780-1795. |
[3] | 康森, 鲁雅荣, 石天虎, 滕斌, 宽军, 李璐, 郝文娟, 段斌斌. 改良泡生法生长720 kg级大尺寸蓝宝石晶体[J]. 人工晶体学报, 2021, 50(8): 1397-1401. |
[4] | 侯红臣, 郑旭鹏, 楼永伟, 程伟强, 陈建军. 成型压力对SiCnf增韧SiC陶瓷基复合材料微观结构和性能的影响[J]. 人工晶体学报, 2021, 50(8): 1525-1533. |
[5] | 徐杰, 宋青松, 刘坚, 丁雨憧, 李东振, 徐晓东, 徐军. Sm∶YAG/Sm∶Y3ScAl4O12单晶光纤的生长及光谱性能[J]. 人工晶体学报, 2021, 50(7): 1391-1396. |
[6] | 任玉娇, 刘宗亮, 顾泓, 董晓鸣, 高晓东, 司志伟, 徐科. LPE生长GaN的不同极性面的光学性质[J]. 人工晶体学报, 2021, 50(6): 996-1001. |
[7] | 姬凯迪, 高灿灿, 杨发顺, 熊倩, 马奎. 后退火气氛对磁控溅射制备β-Ga2O3薄膜材料的影响[J]. 人工晶体学报, 2021, 50(6): 1056-1061. |
[8] | 王明, 王连连, 李林凤, 罗新宇, 刘洋, 赵然, 杨小丽. 助熔剂在硅酸盐荧光粉中的应用及分析[J]. 人工晶体学报, 2021, 50(6): 1149-1157. |
[9] | 綦正超, 许庭翔, 刘学超, 王丁. 杂质和缺陷对SiC单晶导热性能的影响[J]. 人工晶体学报, 2021, 50(5): 816-824. |
[10] | 邱武, 刘向阳. 以晶体生长原理重塑蚕丝柔性材料世界的未来[J]. 人工晶体学报, 2021, 50(4): 629-647. |
[11] | 陈伟超, 罗平, 王庆国, 唐慧丽, 薛艳艳, 段金柱, 王勤峰, 雷震霖, 徐军. 多片导模法蓝宝石晶体的缺陷研究[J]. 人工晶体学报, 2021, 50(4): 741-746. |
[12] | 陈慧挺, 赫崇君, 朱俊, 李自强, 高慧芳, 路元刚. 铌锌酸铅-钛酸铅单晶的生长及性能[J]. 人工晶体学报, 2021, 50(3): 421-427. |
[13] | 王鑫伟, 车致远, 张兴, 李玲薇, 张伟, 苏适, 马晋文. 不同形貌TiO2薄膜的可控制备及其光电化学性能研究[J]. 人工晶体学报, 2021, 50(3): 516-522. |
[14] | 郭勇文, 黄晋强, 权纪亮. 大尺寸Nd,Ce∶YAG激光晶体的生长及缺陷研究[J]. 人工晶体学报, 2021, 50(2): 244-247. |
[15] | 高灿灿, 姬凯迪, 马奎, 杨发顺. 磁控溅射衬底加热温度和后退火温度对制备β-Ga2O3薄膜材料的影响[J]. 人工晶体学报, 2021, 50(2): 296-301. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||